diff options
Diffstat (limited to 'NaiveFFT/fft.c')
-rw-r--r-- | NaiveFFT/fft.c | 271 |
1 files changed, 271 insertions, 0 deletions
diff --git a/NaiveFFT/fft.c b/NaiveFFT/fft.c new file mode 100644 index 0000000..cfcf3fa --- /dev/null +++ b/NaiveFFT/fft.c @@ -0,0 +1,271 @@ +// +// fft.c +// NaiveFFT +// +// Created by Jacky Jack on 26/08/2021. +// + +#include "fft.h" + + + + +//calc the fft +void fft_if(double *x_i, double *x_q, int n, int inv) { + + int i=0,j=0,k=0,m=0, irem=0, sign; + double tq,ti; + + k=n/2; + for (j=1,i=0;i<n,j<n; i++) { + if (i<j) { + + //swap values + ti = x_i[j-1]; + tq = x_q[j-1]; + + x_i[j-1] = x_i[i]; + x_q[j-1] = x_q[i]; + + x_i[i] = ti; + x_q[i] = tq; + printf("i=%d j=%d\n",i,j); + //find middle point + k = n/2; + while (k<j) { + j = j-k; + k=k/2; + } + } else { + printf("i=%d j=%d\n",i,j); + k = n/2; + while (k<j) { + j = j - k; + k = k/2; + } + } + j = j+k; + } + //calculate number of stages: + //m=log2(n) + m=0; + irem = n; + while(irem>1) { + irem = irem/2; + m = m+1; + } + + //FFT or IFFT + if (inv==1) { + sign = 1; + } else { + sign = -1; + } + + // transform + for (i=1; i<m; i++) { + int le=pow(2,i); + int le1=le/2; + double ui=1.0; + double uq=0.0; + double wi = cos(M_PI/le1); + double wq = sign*sin(M_PI/le1); + + printf("le1=%d\n",le1); + for (j=0; j<le1;j++) { + + k=j; + while (k<n) { + int ip = k+le1; + + ti = x_i[ip]*ui - x_q[ip]*uq; + tq = x_q[ip]*ui + x_i[ip]*uq; + + x_i[ip] = x_i[k-1] - ti; + x_q[ip] = x_q[k-1] - tq; + + x_i[k-1] = x_i[k-1] + ti; + x_q[k-1] = x_q[k-1] + tq; + + k = k+le; + printf("k=%d\n",k-1); + } + double temp = ui*wi - uq*wq; + uq = uq*wi + ui*wq; + ui = temp; + } + } + + //if inverse + if (inv==1) { + for (i=0;i<n;i++) { + x_i[i] = x_i[i]/n; + x_q[i] = x_q[i]/n; + } + } + +} + +#define complex_mul_re(a_re, a_im, b_re, b_im) (a_re * b_re - a_im * b_im) +#define complex_mul_im(a_re, a_im, b_re, b_im) (a_re * b_im + a_im * b_re) +//https://github.com/rshuston/FFT-C/blob/master/libfft/fft.c +void ffti_shuffle_1(double *x_i, double *x_q, uint64_t n) { + int Nd2 = n>>1; + int Nm1 = n-1; + int i,j; + + + for (i = 0, j = 0; i < n; i++) { + if (j > i) { + double tmp_r = x_i[i]; + double tmp_i = x_q[i]; + //data[i] = data[j]; + x_i[i] = x_q[j]; + x_q[i] = x_q[j]; + //data[j] = tmp; + x_i[j] = tmp_r; + x_q[j] = tmp_i; + } + + /* + * Find least significant zero bit + */ + + unsigned lszb = ~i & (i + 1); + + /* + * Use division to bit-reverse the single bit so that we now have + * the most significant zero bit + * + * N = 2^r = 2^(m+1) + * Nd2 = N/2 = 2^m + * if lszb = 2^k, where k is within the range of 0...m, then + * mszb = Nd2 / lszb + * = 2^m / 2^k + * = 2^(m-k) + * = bit-reversed value of lszb + */ + + unsigned mszb = Nd2 / lszb; + + /* + * Toggle bits with bit-reverse mask + */ + + unsigned bits = Nm1 & ~(mszb - 1); + j ^= bits; + } +} +void fft_1(double *x_i, double *x_q, uint64_t n, uint64_t inv) { + uint64_t n_log2; + uint64_t r; + uint64_t m, md2; + uint64_t i,j,k; + uint64_t i_e, i_o; + double theta_2pi; + double theta; + + double Wm_r, Wm_i, Wmk_r, Wmk_i; + double u_r, u_i, t_r, t_i; + + //find log of n + i=n; + n_log2 = 0; + while (i>1) { + i=i/2; + n_log2+=1; + } + + if (inv==1) { + theta_2pi = -2*M_PI; + } else { + theta_2pi = 2*M_PI; + } + + + for (i=1; i<= n_log2; i++) { + m = 1 << i; + md2 = m >> 1; + theta = theta_2pi / m; + Wm_r = cos(theta); + Wm_i = sin(theta); + + + for (j=0; j<n; j+=m) { + Wmk_r = 1.0f; + Wmk_i = 0.0f; + + for (k=0; k<md2; k++) { + i_e = j+k; + i_o = i_e + md2; + + u_r = x_i[i_e]; + u_i = x_q[i_e]; + + //t_r = Wmk_r * x_i[i_o] - Wmk_i * x_q[i_o]; + //t_i = Wmk_r * x_q[i_o] - Wmk_i * x_i[i_o]; + t_r = complex_mul_re(Wmk_r, Wmk_i, x_i[i_o], x_q[i_o]); + t_i = complex_mul_im(Wmk_r, Wmk_i, x_i[i_o], x_q[i_o]); + + + x_i[i_e] = u_r + t_r; + x_q[i_e] = u_i + t_i; + + x_i[i_o] = u_r - t_r; + x_q[i_o] = u_i - t_i; + + t_r = complex_mul_re(Wmk_r, Wmk_i, Wm_r, Wm_i); + t_i = complex_mul_im(Wmk_r, Wmk_i, Wm_r, Wm_i); + + Wmk_r = t_r; + Wmk_i = t_i; + } + } + } +} + +//dft works fine +void dft(double *x_i, double *x_q, int n, int inv) { + double Wn,Wk; + //static array + //double Xi[DATA_SIZE],Xq[DATA_SIZE]; + //dynamic array + double *Xi, *Xq; + double c,s; + int i,j; + + Xi = malloc(n*sizeof(double)); + Xq = malloc(n*sizeof(double)); + + Wn = 2*M_PI/n; + + if (inv==1) { + Wn=-Wn; + } + + for (i=0;i<n;i++) { + Xi[i] = 0.0f; + Xq[i] = 0.0f; + + Wk = i*Wn; + for (j=0;j<n;j++) { + c = cos(j*Wk); + s = sin(j*Wk); + + //i - real, q - imaginary + Xi[i] = Xi[i] + x_i[j]*c + x_q[j]*s; + Xq[i] = Xq[i] - x_i[j]*s + x_q[j]*c; + } + + if (inv==1) { + Xi[i] = Xi[i]/n; + Xq[i] = Xq[i]/n; + } + } + + for (i=0;i<n;i++) { + x_i[i] = Xi[i]; + x_q[i] = Xq[i]; + } + +} |