summaryrefslogtreecommitdiff
path: root/Radio/HW/RtlSdr/libusb/io.c
diff options
context:
space:
mode:
Diffstat (limited to 'Radio/HW/RtlSdr/libusb/io.c')
-rw-r--r--Radio/HW/RtlSdr/libusb/io.c2829
1 files changed, 2829 insertions, 0 deletions
diff --git a/Radio/HW/RtlSdr/libusb/io.c b/Radio/HW/RtlSdr/libusb/io.c
new file mode 100644
index 0000000..0d2ac9e
--- /dev/null
+++ b/Radio/HW/RtlSdr/libusb/io.c
@@ -0,0 +1,2829 @@
+/* -*- Mode: C; indent-tabs-mode:t ; c-basic-offset:8 -*- */
+/*
+ * I/O functions for libusb
+ * Copyright © 2007-2009 Daniel Drake <dsd@gentoo.org>
+ * Copyright © 2001 Johannes Erdfelt <johannes@erdfelt.com>
+ * Copyright © 2019 Nathan Hjelm <hjelmn@cs.umm.edu>
+ * Copyright © 2019 Google LLC. All rights reserved.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "libusbi.h"
+
+/**
+ * \page libusb_io Synchronous and asynchronous device I/O
+ *
+ * \section io_intro Introduction
+ *
+ * If you're using libusb in your application, you're probably wanting to
+ * perform I/O with devices - you want to perform USB data transfers.
+ *
+ * libusb offers two separate interfaces for device I/O. This page aims to
+ * introduce the two in order to help you decide which one is more suitable
+ * for your application. You can also choose to use both interfaces in your
+ * application by considering each transfer on a case-by-case basis.
+ *
+ * Once you have read through the following discussion, you should consult the
+ * detailed API documentation pages for the details:
+ * - \ref libusb_syncio
+ * - \ref libusb_asyncio
+ *
+ * \section theory Transfers at a logical level
+ *
+ * At a logical level, USB transfers typically happen in two parts. For
+ * example, when reading data from a endpoint:
+ * -# A request for data is sent to the device
+ * -# Some time later, the incoming data is received by the host
+ *
+ * or when writing data to an endpoint:
+ *
+ * -# The data is sent to the device
+ * -# Some time later, the host receives acknowledgement from the device that
+ * the data has been transferred.
+ *
+ * There may be an indefinite delay between the two steps. Consider a
+ * fictional USB input device with a button that the user can press. In order
+ * to determine when the button is pressed, you would likely submit a request
+ * to read data on a bulk or interrupt endpoint and wait for data to arrive.
+ * Data will arrive when the button is pressed by the user, which is
+ * potentially hours later.
+ *
+ * libusb offers both a synchronous and an asynchronous interface to performing
+ * USB transfers. The main difference is that the synchronous interface
+ * combines both steps indicated above into a single function call, whereas
+ * the asynchronous interface separates them.
+ *
+ * \section sync The synchronous interface
+ *
+ * The synchronous I/O interface allows you to perform a USB transfer with
+ * a single function call. When the function call returns, the transfer has
+ * completed and you can parse the results.
+ *
+ * If you have used libusb-0.1 before, this I/O style will seem familiar to
+ * you. libusb-0.1 only offered a synchronous interface.
+ *
+ * In our input device example, to read button presses you might write code
+ * in the following style:
+\code
+unsigned char data[4];
+int actual_length;
+int r = libusb_bulk_transfer(dev_handle, LIBUSB_ENDPOINT_IN, data, sizeof(data), &actual_length, 0);
+if (r == 0 && actual_length == sizeof(data)) {
+ // results of the transaction can now be found in the data buffer
+ // parse them here and report button press
+} else {
+ error();
+}
+\endcode
+ *
+ * The main advantage of this model is simplicity: you did everything with
+ * a single simple function call.
+ *
+ * However, this interface has its limitations. Your application will sleep
+ * inside libusb_bulk_transfer() until the transaction has completed. If it
+ * takes the user 3 hours to press the button, your application will be
+ * sleeping for that long. Execution will be tied up inside the library -
+ * the entire thread will be useless for that duration.
+ *
+ * Another issue is that by tying up the thread with that single transaction
+ * there is no possibility of performing I/O with multiple endpoints and/or
+ * multiple devices simultaneously, unless you resort to creating one thread
+ * per transaction.
+ *
+ * Additionally, there is no opportunity to cancel the transfer after the
+ * request has been submitted.
+ *
+ * For details on how to use the synchronous API, see the
+ * \ref libusb_syncio "synchronous I/O API documentation" pages.
+ *
+ * \section async The asynchronous interface
+ *
+ * Asynchronous I/O is the most significant new feature in libusb-1.0.
+ * Although it is a more complex interface, it solves all the issues detailed
+ * above.
+ *
+ * Instead of providing which functions that block until the I/O has complete,
+ * libusb's asynchronous interface presents non-blocking functions which
+ * begin a transfer and then return immediately. Your application passes a
+ * callback function pointer to this non-blocking function, which libusb will
+ * call with the results of the transaction when it has completed.
+ *
+ * Transfers which have been submitted through the non-blocking functions
+ * can be cancelled with a separate function call.
+ *
+ * The non-blocking nature of this interface allows you to be simultaneously
+ * performing I/O to multiple endpoints on multiple devices, without having
+ * to use threads.
+ *
+ * This added flexibility does come with some complications though:
+ * - In the interest of being a lightweight library, libusb does not create
+ * threads and can only operate when your application is calling into it. Your
+ * application must call into libusb from it's main loop when events are ready
+ * to be handled, or you must use some other scheme to allow libusb to
+ * undertake whatever work needs to be done.
+ * - libusb also needs to be called into at certain fixed points in time in
+ * order to accurately handle transfer timeouts.
+ * - Memory handling becomes more complex. You cannot use stack memory unless
+ * the function with that stack is guaranteed not to return until the transfer
+ * callback has finished executing.
+ * - You generally lose some linearity from your code flow because submitting
+ * the transfer request is done in a separate function from where the transfer
+ * results are handled. This becomes particularly obvious when you want to
+ * submit a second transfer based on the results of an earlier transfer.
+ *
+ * Internally, libusb's synchronous interface is expressed in terms of function
+ * calls to the asynchronous interface.
+ *
+ * For details on how to use the asynchronous API, see the
+ * \ref libusb_asyncio "asynchronous I/O API" documentation pages.
+ */
+
+
+/**
+ * \page libusb_packetoverflow Packets and overflows
+ *
+ * \section packets Packet abstraction
+ *
+ * The USB specifications describe how data is transmitted in packets, with
+ * constraints on packet size defined by endpoint descriptors. The host must
+ * not send data payloads larger than the endpoint's maximum packet size.
+ *
+ * libusb and the underlying OS abstract out the packet concept, allowing you
+ * to request transfers of any size. Internally, the request will be divided
+ * up into correctly-sized packets. You do not have to be concerned with
+ * packet sizes, but there is one exception when considering overflows.
+ *
+ * \section overflow Bulk/interrupt transfer overflows
+ *
+ * When requesting data on a bulk endpoint, libusb requires you to supply a
+ * buffer and the maximum number of bytes of data that libusb can put in that
+ * buffer. However, the size of the buffer is not communicated to the device -
+ * the device is just asked to send any amount of data.
+ *
+ * There is no problem if the device sends an amount of data that is less than
+ * or equal to the buffer size. libusb reports this condition to you through
+ * the \ref libusb_transfer::actual_length "libusb_transfer.actual_length"
+ * field.
+ *
+ * Problems may occur if the device attempts to send more data than can fit in
+ * the buffer. libusb reports LIBUSB_TRANSFER_OVERFLOW for this condition but
+ * other behaviour is largely undefined: actual_length may or may not be
+ * accurate, the chunk of data that can fit in the buffer (before overflow)
+ * may or may not have been transferred.
+ *
+ * Overflows are nasty, but can be avoided. Even though you were told to
+ * ignore packets above, think about the lower level details: each transfer is
+ * split into packets (typically small, with a maximum size of 512 bytes).
+ * Overflows can only happen if the final packet in an incoming data transfer
+ * is smaller than the actual packet that the device wants to transfer.
+ * Therefore, you will never see an overflow if your transfer buffer size is a
+ * multiple of the endpoint's packet size: the final packet will either
+ * fill up completely or will be only partially filled.
+ */
+
+/**
+ * @defgroup libusb_asyncio Asynchronous device I/O
+ *
+ * This page details libusb's asynchronous (non-blocking) API for USB device
+ * I/O. This interface is very powerful but is also quite complex - you will
+ * need to read this page carefully to understand the necessary considerations
+ * and issues surrounding use of this interface. Simplistic applications
+ * may wish to consider the \ref libusb_syncio "synchronous I/O API" instead.
+ *
+ * The asynchronous interface is built around the idea of separating transfer
+ * submission and handling of transfer completion (the synchronous model
+ * combines both of these into one). There may be a long delay between
+ * submission and completion, however the asynchronous submission function
+ * is non-blocking so will return control to your application during that
+ * potentially long delay.
+ *
+ * \section asyncabstraction Transfer abstraction
+ *
+ * For the asynchronous I/O, libusb implements the concept of a generic
+ * transfer entity for all types of I/O (control, bulk, interrupt,
+ * isochronous). The generic transfer object must be treated slightly
+ * differently depending on which type of I/O you are performing with it.
+ *
+ * This is represented by the public libusb_transfer structure type.
+ *
+ * \section asynctrf Asynchronous transfers
+ *
+ * We can view asynchronous I/O as a 5 step process:
+ * -# <b>Allocation</b>: allocate a libusb_transfer
+ * -# <b>Filling</b>: populate the libusb_transfer instance with information
+ * about the transfer you wish to perform
+ * -# <b>Submission</b>: ask libusb to submit the transfer
+ * -# <b>Completion handling</b>: examine transfer results in the
+ * libusb_transfer structure
+ * -# <b>Deallocation</b>: clean up resources
+ *
+ *
+ * \subsection asyncalloc Allocation
+ *
+ * This step involves allocating memory for a USB transfer. This is the
+ * generic transfer object mentioned above. At this stage, the transfer
+ * is "blank" with no details about what type of I/O it will be used for.
+ *
+ * Allocation is done with the libusb_alloc_transfer() function. You must use
+ * this function rather than allocating your own transfers.
+ *
+ * \subsection asyncfill Filling
+ *
+ * This step is where you take a previously allocated transfer and fill it
+ * with information to determine the message type and direction, data buffer,
+ * callback function, etc.
+ *
+ * You can either fill the required fields yourself or you can use the
+ * helper functions: libusb_fill_control_transfer(), libusb_fill_bulk_transfer()
+ * and libusb_fill_interrupt_transfer().
+ *
+ * \subsection asyncsubmit Submission
+ *
+ * When you have allocated a transfer and filled it, you can submit it using
+ * libusb_submit_transfer(). This function returns immediately but can be
+ * regarded as firing off the I/O request in the background.
+ *
+ * \subsection asynccomplete Completion handling
+ *
+ * After a transfer has been submitted, one of four things can happen to it:
+ *
+ * - The transfer completes (i.e. some data was transferred)
+ * - The transfer has a timeout and the timeout expires before all data is
+ * transferred
+ * - The transfer fails due to an error
+ * - The transfer is cancelled
+ *
+ * Each of these will cause the user-specified transfer callback function to
+ * be invoked. It is up to the callback function to determine which of the
+ * above actually happened and to act accordingly.
+ *
+ * The user-specified callback is passed a pointer to the libusb_transfer
+ * structure which was used to setup and submit the transfer. At completion
+ * time, libusb has populated this structure with results of the transfer:
+ * success or failure reason, number of bytes of data transferred, etc. See
+ * the libusb_transfer structure documentation for more information.
+ *
+ * <b>Important Note</b>: The user-specified callback is called from an event
+ * handling context. It is therefore important that no calls are made into
+ * libusb that will attempt to perform any event handling. Examples of such
+ * functions are any listed in the \ref libusb_syncio "synchronous API" and any of
+ * the blocking functions that retrieve \ref libusb_desc "USB descriptors".
+ *
+ * \subsection Deallocation
+ *
+ * When a transfer has completed (i.e. the callback function has been invoked),
+ * you are advised to free the transfer (unless you wish to resubmit it, see
+ * below). Transfers are deallocated with libusb_free_transfer().
+ *
+ * It is undefined behaviour to free a transfer which has not completed.
+ *
+ * \section asyncresubmit Resubmission
+ *
+ * You may be wondering why allocation, filling, and submission are all
+ * separated above where they could reasonably be combined into a single
+ * operation.
+ *
+ * The reason for separation is to allow you to resubmit transfers without
+ * having to allocate new ones every time. This is especially useful for
+ * common situations dealing with interrupt endpoints - you allocate one
+ * transfer, fill and submit it, and when it returns with results you just
+ * resubmit it for the next interrupt.
+ *
+ * \section asynccancel Cancellation
+ *
+ * Another advantage of using the asynchronous interface is that you have
+ * the ability to cancel transfers which have not yet completed. This is
+ * done by calling the libusb_cancel_transfer() function.
+ *
+ * libusb_cancel_transfer() is asynchronous/non-blocking in itself. When the
+ * cancellation actually completes, the transfer's callback function will
+ * be invoked, and the callback function should check the transfer status to
+ * determine that it was cancelled.
+ *
+ * Freeing the transfer after it has been cancelled but before cancellation
+ * has completed will result in undefined behaviour.
+ *
+ * \attention
+ * When a transfer is cancelled, some of the data may have been transferred.
+ * libusb will communicate this to you in the transfer callback.
+ * <b>Do not assume that no data was transferred.</b>
+ *
+ * \section asyncpartial Partial data transfer resulting from cancellation
+ *
+ * As noted above, some of the data may have been transferred at the time a
+ * transfer is cancelled. It is helpful to see how this is possible if you
+ * consider a bulk transfer to an endpoint with a packet size of 64 bytes.
+ * Supposing you submit a 512-byte transfer to this endpoint, the operating
+ * system will divide this transfer up into 8 separate 64-byte frames that the
+ * host controller will schedule for the device to transfer data. If this
+ * transfer is cancelled while the device is transferring data, a subset of
+ * these frames may be descheduled from the host controller before the device
+ * has the opportunity to finish transferring data to the host.
+ *
+ * What your application should do with a partial data transfer is a policy
+ * decision; there is no single answer that satisfies the needs of every
+ * application. The data that was successfully transferred should be
+ * considered entirely valid, but your application must decide what to do with
+ * the remaining data that was not transferred. Some possible actions to take
+ * are:
+ * - Resubmit another transfer for the remaining data, possibly with a shorter
+ * timeout
+ * - Discard the partially transferred data and report an error
+ *
+ * \section asynctimeout Timeouts
+ *
+ * When a transfer times out, libusb internally notes this and attempts to
+ * cancel the transfer. As noted in \ref asyncpartial "above", it is possible
+ * that some of the data may actually have been transferred. Your application
+ * should <b>always</b> check how much data was actually transferred once the
+ * transfer completes and act accordingly.
+ *
+ * \section bulk_overflows Overflows on device-to-host bulk/interrupt endpoints
+ *
+ * If your device does not have predictable transfer sizes (or it misbehaves),
+ * your application may submit a request for data on an IN endpoint which is
+ * smaller than the data that the device wishes to send. In some circumstances
+ * this will cause an overflow, which is a nasty condition to deal with. See
+ * the \ref libusb_packetoverflow page for discussion.
+ *
+ * \section asyncctrl Considerations for control transfers
+ *
+ * The <tt>libusb_transfer</tt> structure is generic and hence does not
+ * include specific fields for the control-specific setup packet structure.
+ *
+ * In order to perform a control transfer, you must place the 8-byte setup
+ * packet at the start of the data buffer. To simplify this, you could
+ * cast the buffer pointer to type struct libusb_control_setup, or you can
+ * use the helper function libusb_fill_control_setup().
+ *
+ * The wLength field placed in the setup packet must be the length you would
+ * expect to be sent in the setup packet: the length of the payload that
+ * follows (or the expected maximum number of bytes to receive). However,
+ * the length field of the libusb_transfer object must be the length of
+ * the data buffer - i.e. it should be wLength <em>plus</em> the size of
+ * the setup packet (LIBUSB_CONTROL_SETUP_SIZE).
+ *
+ * If you use the helper functions, this is simplified for you:
+ * -# Allocate a buffer of size LIBUSB_CONTROL_SETUP_SIZE plus the size of the
+ * data you are sending/requesting.
+ * -# Call libusb_fill_control_setup() on the data buffer, using the transfer
+ * request size as the wLength value (i.e. do not include the extra space you
+ * allocated for the control setup).
+ * -# If this is a host-to-device transfer, place the data to be transferred
+ * in the data buffer, starting at offset LIBUSB_CONTROL_SETUP_SIZE.
+ * -# Call libusb_fill_control_transfer() to associate the data buffer with
+ * the transfer (and to set the remaining details such as callback and timeout).
+ * - Note that there is no parameter to set the length field of the transfer.
+ * The length is automatically inferred from the wLength field of the setup
+ * packet.
+ * -# Submit the transfer.
+ *
+ * The multi-byte control setup fields (wValue, wIndex and wLength) must
+ * be given in little-endian byte order (the endianness of the USB bus).
+ * Endianness conversion is transparently handled by
+ * libusb_fill_control_setup() which is documented to accept host-endian
+ * values.
+ *
+ * Further considerations are needed when handling transfer completion in
+ * your callback function:
+ * - As you might expect, the setup packet will still be sitting at the start
+ * of the data buffer.
+ * - If this was a device-to-host transfer, the received data will be sitting
+ * at offset LIBUSB_CONTROL_SETUP_SIZE into the buffer.
+ * - The actual_length field of the transfer structure is relative to the
+ * wLength of the setup packet, rather than the size of the data buffer. So,
+ * if your wLength was 4, your transfer's <tt>length</tt> was 12, then you
+ * should expect an <tt>actual_length</tt> of 4 to indicate that the data was
+ * transferred in entirety.
+ *
+ * To simplify parsing of setup packets and obtaining the data from the
+ * correct offset, you may wish to use the libusb_control_transfer_get_data()
+ * and libusb_control_transfer_get_setup() functions within your transfer
+ * callback.
+ *
+ * Even though control endpoints do not halt, a completed control transfer
+ * may have a LIBUSB_TRANSFER_STALL status code. This indicates the control
+ * request was not supported.
+ *
+ * \section asyncintr Considerations for interrupt transfers
+ *
+ * All interrupt transfers are performed using the polling interval presented
+ * by the bInterval value of the endpoint descriptor.
+ *
+ * \section asynciso Considerations for isochronous transfers
+ *
+ * Isochronous transfers are more complicated than transfers to
+ * non-isochronous endpoints.
+ *
+ * To perform I/O to an isochronous endpoint, allocate the transfer by calling
+ * libusb_alloc_transfer() with an appropriate number of isochronous packets.
+ *
+ * During filling, set \ref libusb_transfer::type "type" to
+ * \ref libusb_transfer_type::LIBUSB_TRANSFER_TYPE_ISOCHRONOUS
+ * "LIBUSB_TRANSFER_TYPE_ISOCHRONOUS", and set
+ * \ref libusb_transfer::num_iso_packets "num_iso_packets" to a value less than
+ * or equal to the number of packets you requested during allocation.
+ * libusb_alloc_transfer() does not set either of these fields for you, given
+ * that you might not even use the transfer on an isochronous endpoint.
+ *
+ * Next, populate the length field for the first num_iso_packets entries in
+ * the \ref libusb_transfer::iso_packet_desc "iso_packet_desc" array. Section
+ * 5.6.3 of the USB2 specifications describe how the maximum isochronous
+ * packet length is determined by the wMaxPacketSize field in the endpoint
+ * descriptor.
+ * Two functions can help you here:
+ *
+ * - libusb_get_max_iso_packet_size() is an easy way to determine the max
+ * packet size for an isochronous endpoint. Note that the maximum packet
+ * size is actually the maximum number of bytes that can be transmitted in
+ * a single microframe, therefore this function multiplies the maximum number
+ * of bytes per transaction by the number of transaction opportunities per
+ * microframe.
+ * - libusb_set_iso_packet_lengths() assigns the same length to all packets
+ * within a transfer, which is usually what you want.
+ *
+ * For outgoing transfers, you'll obviously fill the buffer and populate the
+ * packet descriptors in hope that all the data gets transferred. For incoming
+ * transfers, you must ensure the buffer has sufficient capacity for
+ * the situation where all packets transfer the full amount of requested data.
+ *
+ * Completion handling requires some extra consideration. The
+ * \ref libusb_transfer::actual_length "actual_length" field of the transfer
+ * is meaningless and should not be examined; instead you must refer to the
+ * \ref libusb_iso_packet_descriptor::actual_length "actual_length" field of
+ * each individual packet.
+ *
+ * The \ref libusb_transfer::status "status" field of the transfer is also a
+ * little misleading:
+ * - If the packets were submitted and the isochronous data microframes
+ * completed normally, status will have value
+ * \ref libusb_transfer_status::LIBUSB_TRANSFER_COMPLETED
+ * "LIBUSB_TRANSFER_COMPLETED". Note that bus errors and software-incurred
+ * delays are not counted as transfer errors; the transfer.status field may
+ * indicate COMPLETED even if some or all of the packets failed. Refer to
+ * the \ref libusb_iso_packet_descriptor::status "status" field of each
+ * individual packet to determine packet failures.
+ * - The status field will have value
+ * \ref libusb_transfer_status::LIBUSB_TRANSFER_ERROR
+ * "LIBUSB_TRANSFER_ERROR" only when serious errors were encountered.
+ * - Other transfer status codes occur with normal behaviour.
+ *
+ * The data for each packet will be found at an offset into the buffer that
+ * can be calculated as if each prior packet completed in full. The
+ * libusb_get_iso_packet_buffer() and libusb_get_iso_packet_buffer_simple()
+ * functions may help you here.
+ *
+ * \section asynclimits Transfer length limitations
+ *
+ * Some operating systems may impose limits on the length of the transfer data
+ * buffer or, in the case of isochronous transfers, the length of individual
+ * isochronous packets. Such limits can be difficult for libusb to detect, so
+ * in most cases the library will simply try and submit the transfer as set up
+ * by you. If the transfer fails to submit because it is too large,
+ * libusb_submit_transfer() will return
+ * \ref libusb_error::LIBUSB_ERROR_INVALID_PARAM "LIBUSB_ERROR_INVALID_PARAM".
+ *
+ * The following are known limits for control transfer lengths. Note that this
+ * length includes the 8-byte setup packet.
+ * - Linux (4,096 bytes)
+ * - Windows (4,096 bytes)
+ *
+ * \section asyncmem Memory caveats
+ *
+ * In most circumstances, it is not safe to use stack memory for transfer
+ * buffers. This is because the function that fired off the asynchronous
+ * transfer may return before libusb has finished using the buffer, and when
+ * the function returns it's stack gets destroyed. This is true for both
+ * host-to-device and device-to-host transfers.
+ *
+ * The only case in which it is safe to use stack memory is where you can
+ * guarantee that the function owning the stack space for the buffer does not
+ * return until after the transfer's callback function has completed. In every
+ * other case, you need to use heap memory instead.
+ *
+ * \section asyncflags Fine control
+ *
+ * Through using this asynchronous interface, you may find yourself repeating
+ * a few simple operations many times. You can apply a bitwise OR of certain
+ * flags to a transfer to simplify certain things:
+ * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_SHORT_NOT_OK
+ * "LIBUSB_TRANSFER_SHORT_NOT_OK" results in transfers which transferred
+ * less than the requested amount of data being marked with status
+ * \ref libusb_transfer_status::LIBUSB_TRANSFER_ERROR "LIBUSB_TRANSFER_ERROR"
+ * (they would normally be regarded as COMPLETED)
+ * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_BUFFER
+ * "LIBUSB_TRANSFER_FREE_BUFFER" allows you to ask libusb to free the transfer
+ * buffer when freeing the transfer.
+ * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_TRANSFER
+ * "LIBUSB_TRANSFER_FREE_TRANSFER" causes libusb to automatically free the
+ * transfer after the transfer callback returns.
+ *
+ * \section asyncevent Event handling
+ *
+ * An asynchronous model requires that libusb perform work at various
+ * points in time - namely processing the results of previously-submitted
+ * transfers and invoking the user-supplied callback function.
+ *
+ * This gives rise to the libusb_handle_events() function which your
+ * application must call into when libusb has work do to. This gives libusb
+ * the opportunity to reap pending transfers, invoke callbacks, etc.
+ *
+ * \note
+ * All event handling is performed by whichever thread calls the
+ * libusb_handle_events() function. libusb does not invoke any callbacks
+ * outside of this context. Consequently, any callbacks will be run on the
+ * thread that calls the libusb_handle_events() function.
+ *
+ * When to call the libusb_handle_events() function depends on which model
+ * your application decides to use. The 2 different approaches:
+ *
+ * -# Repeatedly call libusb_handle_events() in blocking mode from a dedicated
+ * thread.
+ * -# Integrate libusb with your application's main event loop. libusb
+ * exposes a set of file descriptors which allow you to do this.
+ *
+ * The first approach has the big advantage that it will also work on Windows
+ * were libusb' poll API for select / poll integration is not available. So
+ * if you want to support Windows and use the async API, you must use this
+ * approach, see the \ref eventthread "Using an event handling thread" section
+ * below for details.
+ *
+ * If you prefer a single threaded approach with a single central event loop,
+ * see the \ref libusb_poll "polling and timing" section for how to integrate libusb
+ * into your application's main event loop.
+ *
+ * \section eventthread Using an event handling thread
+ *
+ * Lets begin with stating the obvious: If you're going to use a separate
+ * thread for libusb event handling, your callback functions MUST be
+ * thread-safe.
+ *
+ * Other then that doing event handling from a separate thread, is mostly
+ * simple. You can use an event thread function as follows:
+\code
+void *event_thread_func(void *ctx)
+{
+ while (event_thread_run)
+ libusb_handle_events(ctx);
+
+ return NULL;
+}
+\endcode
+ *
+ * There is one caveat though, stopping this thread requires setting the
+ * event_thread_run variable to 0, and after that libusb_handle_events() needs
+ * to return control to event_thread_func. But unless some event happens,
+ * libusb_handle_events() will not return.
+ *
+ * There are 2 different ways of dealing with this, depending on if your
+ * application uses libusb' \ref libusb_hotplug "hotplug" support or not.
+ *
+ * Applications which do not use hotplug support, should not start the event
+ * thread until after their first call to libusb_open(), and should stop the
+ * thread when closing the last open device as follows:
+\code
+void my_close_handle(libusb_device_handle *dev_handle)
+{
+ if (open_devs == 1)
+ event_thread_run = 0;
+
+ libusb_close(dev_handle); // This wakes up libusb_handle_events()
+
+ if (open_devs == 1)
+ pthread_join(event_thread);
+
+ open_devs--;
+}
+\endcode
+ *
+ * Applications using hotplug support should start the thread at program init,
+ * after having successfully called libusb_hotplug_register_callback(), and
+ * should stop the thread at program exit as follows:
+\code
+void my_libusb_exit(void)
+{
+ event_thread_run = 0;
+ libusb_hotplug_deregister_callback(ctx, hotplug_cb_handle); // This wakes up libusb_handle_events()
+ pthread_join(event_thread);
+ libusb_exit(ctx);
+}
+\endcode
+ */
+
+/**
+ * @defgroup libusb_poll Polling and timing
+ *
+ * This page documents libusb's functions for polling events and timing.
+ * These functions are only necessary for users of the
+ * \ref libusb_asyncio "asynchronous API". If you are only using the simpler
+ * \ref libusb_syncio "synchronous API" then you do not need to ever call these
+ * functions.
+ *
+ * The justification for the functionality described here has already been
+ * discussed in the \ref asyncevent "event handling" section of the
+ * asynchronous API documentation. In summary, libusb does not create internal
+ * threads for event processing and hence relies on your application calling
+ * into libusb at certain points in time so that pending events can be handled.
+ *
+ * Your main loop is probably already calling poll() or select() or a
+ * variant on a set of file descriptors for other event sources (e.g. keyboard
+ * button presses, mouse movements, network sockets, etc). You then add
+ * libusb's file descriptors to your poll()/select() calls, and when activity
+ * is detected on such descriptors you know it is time to call
+ * libusb_handle_events().
+ *
+ * There is one final event handling complication. libusb supports
+ * asynchronous transfers which time out after a specified time period.
+ *
+ * On some platforms a timerfd is used, so the timeout handling is just another
+ * fd, on other platforms this requires that libusb is called into at or after
+ * the timeout to handle it. So, in addition to considering libusb's file
+ * descriptors in your main event loop, you must also consider that libusb
+ * sometimes needs to be called into at fixed points in time even when there
+ * is no file descriptor activity, see \ref polltime details.
+ *
+ * In order to know precisely when libusb needs to be called into, libusb
+ * offers you a set of pollable file descriptors and information about when
+ * the next timeout expires.
+ *
+ * If you are using the asynchronous I/O API, you must take one of the two
+ * following options, otherwise your I/O will not complete.
+ *
+ * \section pollsimple The simple option
+ *
+ * If your application revolves solely around libusb and does not need to
+ * handle other event sources, you can have a program structure as follows:
+\code
+// initialize libusb
+// find and open device
+// maybe fire off some initial async I/O
+
+while (user_has_not_requested_exit)
+ libusb_handle_events(ctx);
+
+// clean up and exit
+\endcode
+ *
+ * With such a simple main loop, you do not have to worry about managing
+ * sets of file descriptors or handling timeouts. libusb_handle_events() will
+ * handle those details internally.
+ *
+ * \section libusb_pollmain The more advanced option
+ *
+ * \note This functionality is currently only available on Unix-like platforms.
+ * On Windows, libusb_get_pollfds() simply returns NULL. Applications which
+ * want to support Windows are advised to use an \ref eventthread
+ * "event handling thread" instead.
+ *
+ * In more advanced applications, you will already have a main loop which
+ * is monitoring other event sources: network sockets, X11 events, mouse
+ * movements, etc. Through exposing a set of file descriptors, libusb is
+ * designed to cleanly integrate into such main loops.
+ *
+ * In addition to polling file descriptors for the other event sources, you
+ * take a set of file descriptors from libusb and monitor those too. When you
+ * detect activity on libusb's file descriptors, you call
+ * libusb_handle_events_timeout() in non-blocking mode.
+ *
+ * What's more, libusb may also need to handle events at specific moments in
+ * time. No file descriptor activity is generated at these times, so your
+ * own application needs to be continually aware of when the next one of these
+ * moments occurs (through calling libusb_get_next_timeout()), and then it
+ * needs to call libusb_handle_events_timeout() in non-blocking mode when
+ * these moments occur. This means that you need to adjust your
+ * poll()/select() timeout accordingly.
+ *
+ * libusb provides you with a set of file descriptors to poll and expects you
+ * to poll all of them, treating them as a single entity. The meaning of each
+ * file descriptor in the set is an internal implementation detail,
+ * platform-dependent and may vary from release to release. Don't try and
+ * interpret the meaning of the file descriptors, just do as libusb indicates,
+ * polling all of them at once.
+ *
+ * In pseudo-code, you want something that looks like:
+\code
+// initialise libusb
+
+libusb_get_pollfds(ctx)
+while (user has not requested application exit) {
+ libusb_get_next_timeout(ctx);
+ poll(on libusb file descriptors plus any other event sources of interest,
+ using a timeout no larger than the value libusb just suggested)
+ if (poll() indicated activity on libusb file descriptors)
+ libusb_handle_events_timeout(ctx, &zero_tv);
+ if (time has elapsed to or beyond the libusb timeout)
+ libusb_handle_events_timeout(ctx, &zero_tv);
+ // handle events from other sources here
+}
+
+// clean up and exit
+\endcode
+ *
+ * \subsection polltime Notes on time-based events
+ *
+ * The above complication with having to track time and call into libusb at
+ * specific moments is a bit of a headache. For maximum compatibility, you do
+ * need to write your main loop as above, but you may decide that you can
+ * restrict the supported platforms of your application and get away with
+ * a more simplistic scheme.
+ *
+ * These time-based event complications are \b not required on the following
+ * platforms:
+ * - Darwin
+ * - Linux, provided that the following version requirements are satisfied:
+ * - Linux v2.6.27 or newer, compiled with timerfd support
+ * - glibc v2.9 or newer
+ * - libusb v1.0.5 or newer
+ *
+ * Under these configurations, libusb_get_next_timeout() will \em always return
+ * 0, so your main loop can be simplified to:
+\code
+// initialise libusb
+
+libusb_get_pollfds(ctx)
+while (user has not requested application exit) {
+ poll(on libusb file descriptors plus any other event sources of interest,
+ using any timeout that you like)
+ if (poll() indicated activity on libusb file descriptors)
+ libusb_handle_events_timeout(ctx, &zero_tv);
+ // handle events from other sources here
+}
+
+// clean up and exit
+\endcode
+ *
+ * Do remember that if you simplify your main loop to the above, you will
+ * lose compatibility with some platforms (including legacy Linux platforms,
+ * and <em>any future platforms supported by libusb which may have time-based
+ * event requirements</em>). The resultant problems will likely appear as
+ * strange bugs in your application.
+ *
+ * You can use the libusb_pollfds_handle_timeouts() function to do a runtime
+ * check to see if it is safe to ignore the time-based event complications.
+ * If your application has taken the shortcut of ignoring libusb's next timeout
+ * in your main loop, then you are advised to check the return value of
+ * libusb_pollfds_handle_timeouts() during application startup, and to abort
+ * if the platform does suffer from these timing complications.
+ *
+ * \subsection fdsetchange Changes in the file descriptor set
+ *
+ * The set of file descriptors that libusb uses as event sources may change
+ * during the life of your application. Rather than having to repeatedly
+ * call libusb_get_pollfds(), you can set up notification functions for when
+ * the file descriptor set changes using libusb_set_pollfd_notifiers().
+ *
+ * \subsection mtissues Multi-threaded considerations
+ *
+ * Unfortunately, the situation is complicated further when multiple threads
+ * come into play. If two threads are monitoring the same file descriptors,
+ * the fact that only one thread will be woken up when an event occurs causes
+ * some headaches.
+ *
+ * The events lock, event waiters lock, and libusb_handle_events_locked()
+ * entities are added to solve these problems. You do not need to be concerned
+ * with these entities otherwise.
+ *
+ * See the extra documentation: \ref libusb_mtasync
+ */
+
+/** \page libusb_mtasync Multi-threaded applications and asynchronous I/O
+ *
+ * libusb is a thread-safe library, but extra considerations must be applied
+ * to applications which interact with libusb from multiple threads.
+ *
+ * The underlying issue that must be addressed is that all libusb I/O
+ * revolves around monitoring file descriptors through the poll()/select()
+ * system calls. This is directly exposed at the
+ * \ref libusb_asyncio "asynchronous interface" but it is important to note that the
+ * \ref libusb_syncio "synchronous interface" is implemented on top of the
+ * asynchronous interface, therefore the same considerations apply.
+ *
+ * The issue is that if two or more threads are concurrently calling poll()
+ * or select() on libusb's file descriptors then only one of those threads
+ * will be woken up when an event arrives. The others will be completely
+ * oblivious that anything has happened.
+ *
+ * Consider the following pseudo-code, which submits an asynchronous transfer
+ * then waits for its completion. This style is one way you could implement a
+ * synchronous interface on top of the asynchronous interface (and libusb
+ * does something similar, albeit more advanced due to the complications
+ * explained on this page).
+ *
+\code
+void cb(struct libusb_transfer *transfer)
+{
+ int *completed = transfer->user_data;
+ *completed = 1;
+}
+
+void myfunc() {
+ struct libusb_transfer *transfer;
+ unsigned char buffer[LIBUSB_CONTROL_SETUP_SIZE] __attribute__ ((aligned (2)));
+ int completed = 0;
+
+ transfer = libusb_alloc_transfer(0);
+ libusb_fill_control_setup(buffer,
+ LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT, 0x04, 0x01, 0, 0);
+ libusb_fill_control_transfer(transfer, dev, buffer, cb, &completed, 1000);
+ libusb_submit_transfer(transfer);
+
+ while (!completed) {
+ poll(libusb file descriptors, 120*1000);
+ if (poll indicates activity)
+ libusb_handle_events_timeout(ctx, &zero_tv);
+ }
+ printf("completed!");
+ // other code here
+}
+\endcode
+ *
+ * Here we are <em>serializing</em> completion of an asynchronous event
+ * against a condition - the condition being completion of a specific transfer.
+ * The poll() loop has a long timeout to minimize CPU usage during situations
+ * when nothing is happening (it could reasonably be unlimited).
+ *
+ * If this is the only thread that is polling libusb's file descriptors, there
+ * is no problem: there is no danger that another thread will swallow up the
+ * event that we are interested in. On the other hand, if there is another
+ * thread polling the same descriptors, there is a chance that it will receive
+ * the event that we were interested in. In this situation, <tt>myfunc()</tt>
+ * will only realise that the transfer has completed on the next iteration of
+ * the loop, <em>up to 120 seconds later.</em> Clearly a two-minute delay is
+ * undesirable, and don't even think about using short timeouts to circumvent
+ * this issue!
+ *
+ * The solution here is to ensure that no two threads are ever polling the
+ * file descriptors at the same time. A naive implementation of this would
+ * impact the capabilities of the library, so libusb offers the scheme
+ * documented below to ensure no loss of functionality.
+ *
+ * Before we go any further, it is worth mentioning that all libusb-wrapped
+ * event handling procedures fully adhere to the scheme documented below.
+ * This includes libusb_handle_events() and its variants, and all the
+ * synchronous I/O functions - libusb hides this headache from you.
+ *
+ * \section Using libusb_handle_events() from multiple threads
+ *
+ * Even when only using libusb_handle_events() and synchronous I/O functions,
+ * you can still have a race condition. You might be tempted to solve the
+ * above with libusb_handle_events() like so:
+ *
+\code
+ libusb_submit_transfer(transfer);
+
+ while (!completed) {
+ libusb_handle_events(ctx);
+ }
+ printf("completed!");
+\endcode
+ *
+ * This however has a race between the checking of completed and
+ * libusb_handle_events() acquiring the events lock, so another thread
+ * could have completed the transfer, resulting in this thread hanging
+ * until either a timeout or another event occurs. See also commit
+ * 6696512aade99bb15d6792af90ae329af270eba6 which fixes this in the
+ * synchronous API implementation of libusb.
+ *
+ * Fixing this race requires checking the variable completed only after
+ * taking the event lock, which defeats the concept of just calling
+ * libusb_handle_events() without worrying about locking. This is why
+ * libusb-1.0.9 introduces the new libusb_handle_events_timeout_completed()
+ * and libusb_handle_events_completed() functions, which handles doing the
+ * completion check for you after they have acquired the lock:
+ *
+\code
+ libusb_submit_transfer(transfer);
+
+ while (!completed) {
+ libusb_handle_events_completed(ctx, &completed);
+ }
+ printf("completed!");
+\endcode
+ *
+ * This nicely fixes the race in our example. Note that if all you want to
+ * do is submit a single transfer and wait for its completion, then using
+ * one of the synchronous I/O functions is much easier.
+ *
+ * \note
+ * The `completed` variable must be modified while holding the event lock,
+ * otherwise a race condition can still exist. It is simplest to do so from
+ * within the transfer callback as shown above.
+ *
+ * \section eventlock The events lock
+ *
+ * The problem is when we consider the fact that libusb exposes file
+ * descriptors to allow for you to integrate asynchronous USB I/O into
+ * existing main loops, effectively allowing you to do some work behind
+ * libusb's back. If you do take libusb's file descriptors and pass them to
+ * poll()/select() yourself, you need to be aware of the associated issues.
+ *
+ * The first concept to be introduced is the events lock. The events lock
+ * is used to serialize threads that want to handle events, such that only
+ * one thread is handling events at any one time.
+ *
+ * You must take the events lock before polling libusb file descriptors,
+ * using libusb_lock_events(). You must release the lock as soon as you have
+ * aborted your poll()/select() loop, using libusb_unlock_events().
+ *
+ * \section threadwait Letting other threads do the work for you
+ *
+ * Although the events lock is a critical part of the solution, it is not
+ * enough on it's own. You might wonder if the following is sufficient...
+\code
+ libusb_lock_events(ctx);
+ while (!completed) {
+ poll(libusb file descriptors, 120*1000);
+ if (poll indicates activity)
+ libusb_handle_events_timeout(ctx, &zero_tv);
+ }
+ libusb_unlock_events(ctx);
+\endcode
+ * ...and the answer is that it is not. This is because the transfer in the
+ * code shown above may take a long time (say 30 seconds) to complete, and
+ * the lock is not released until the transfer is completed.
+ *
+ * Another thread with similar code that wants to do event handling may be
+ * working with a transfer that completes after a few milliseconds. Despite
+ * having such a quick completion time, the other thread cannot check that
+ * status of its transfer until the code above has finished (30 seconds later)
+ * due to contention on the lock.
+ *
+ * To solve this, libusb offers you a mechanism to determine when another
+ * thread is handling events. It also offers a mechanism to block your thread
+ * until the event handling thread has completed an event (and this mechanism
+ * does not involve polling of file descriptors).
+ *
+ * After determining that another thread is currently handling events, you
+ * obtain the <em>event waiters</em> lock using libusb_lock_event_waiters().
+ * You then re-check that some other thread is still handling events, and if
+ * so, you call libusb_wait_for_event().
+ *
+ * libusb_wait_for_event() puts your application to sleep until an event
+ * occurs, or until a thread releases the events lock. When either of these
+ * things happen, your thread is woken up, and should re-check the condition
+ * it was waiting on. It should also re-check that another thread is handling
+ * events, and if not, it should start handling events itself.
+ *
+ * This looks like the following, as pseudo-code:
+\code
+retry:
+if (libusb_try_lock_events(ctx) == 0) {
+ // we obtained the event lock: do our own event handling
+ while (!completed) {
+ if (!libusb_event_handling_ok(ctx)) {
+ libusb_unlock_events(ctx);
+ goto retry;
+ }
+ poll(libusb file descriptors, 120*1000);
+ if (poll indicates activity)
+ libusb_handle_events_locked(ctx, 0);
+ }
+ libusb_unlock_events(ctx);
+} else {
+ // another thread is doing event handling. wait for it to signal us that
+ // an event has completed
+ libusb_lock_event_waiters(ctx);
+
+ while (!completed) {
+ // now that we have the event waiters lock, double check that another
+ // thread is still handling events for us. (it may have ceased handling
+ // events in the time it took us to reach this point)
+ if (!libusb_event_handler_active(ctx)) {
+ // whoever was handling events is no longer doing so, try again
+ libusb_unlock_event_waiters(ctx);
+ goto retry;
+ }
+
+ libusb_wait_for_event(ctx, NULL);
+ }
+ libusb_unlock_event_waiters(ctx);
+}
+printf("completed!\n");
+\endcode
+ *
+ * A naive look at the above code may suggest that this can only support
+ * one event waiter (hence a total of 2 competing threads, the other doing
+ * event handling), because the event waiter seems to have taken the event
+ * waiters lock while waiting for an event. However, the system does support
+ * multiple event waiters, because libusb_wait_for_event() actually drops
+ * the lock while waiting, and reacquires it before continuing.
+ *
+ * We have now implemented code which can dynamically handle situations where
+ * nobody is handling events (so we should do it ourselves), and it can also
+ * handle situations where another thread is doing event handling (so we can
+ * piggyback onto them). It is also equipped to handle a combination of
+ * the two, for example, another thread is doing event handling, but for
+ * whatever reason it stops doing so before our condition is met, so we take
+ * over the event handling.
+ *
+ * Four functions were introduced in the above pseudo-code. Their importance
+ * should be apparent from the code shown above.
+ * -# libusb_try_lock_events() is a non-blocking function which attempts
+ * to acquire the events lock but returns a failure code if it is contended.
+ * -# libusb_event_handling_ok() checks that libusb is still happy for your
+ * thread to be performing event handling. Sometimes, libusb needs to
+ * interrupt the event handler, and this is how you can check if you have
+ * been interrupted. If this function returns 0, the correct behaviour is
+ * for you to give up the event handling lock, and then to repeat the cycle.
+ * The following libusb_try_lock_events() will fail, so you will become an
+ * events waiter. For more information on this, read \ref fullstory below.
+ * -# libusb_handle_events_locked() is a variant of
+ * libusb_handle_events_timeout() that you can call while holding the
+ * events lock. libusb_handle_events_timeout() itself implements similar
+ * logic to the above, so be sure not to call it when you are
+ * "working behind libusb's back", as is the case here.
+ * -# libusb_event_handler_active() determines if someone is currently
+ * holding the events lock
+ *
+ * You might be wondering why there is no function to wake up all threads
+ * blocked on libusb_wait_for_event(). This is because libusb can do this
+ * internally: it will wake up all such threads when someone calls
+ * libusb_unlock_events() or when a transfer completes (at the point after its
+ * callback has returned).
+ *
+ * \subsection fullstory The full story
+ *
+ * The above explanation should be enough to get you going, but if you're
+ * really thinking through the issues then you may be left with some more
+ * questions regarding libusb's internals. If you're curious, read on, and if
+ * not, skip to the next section to avoid confusing yourself!
+ *
+ * The immediate question that may spring to mind is: what if one thread
+ * modifies the set of file descriptors that need to be polled while another
+ * thread is doing event handling?
+ *
+ * There are 2 situations in which this may happen.
+ * -# libusb_open() will add another file descriptor to the poll set,
+ * therefore it is desirable to interrupt the event handler so that it
+ * restarts, picking up the new descriptor.
+ * -# libusb_close() will remove a file descriptor from the poll set. There
+ * are all kinds of race conditions that could arise here, so it is
+ * important that nobody is doing event handling at this time.
+ *
+ * libusb handles these issues internally, so application developers do not
+ * have to stop their event handlers while opening/closing devices. Here's how
+ * it works, focusing on the libusb_close() situation first:
+ *
+ * -# During initialization, libusb opens an internal pipe, and it adds the read
+ * end of this pipe to the set of file descriptors to be polled.
+ * -# During libusb_close(), libusb writes some dummy data on this event pipe.
+ * This immediately interrupts the event handler. libusb also records
+ * internally that it is trying to interrupt event handlers for this
+ * high-priority event.
+ * -# At this point, some of the functions described above start behaving
+ * differently:
+ * - libusb_event_handling_ok() starts returning 1, indicating that it is NOT
+ * OK for event handling to continue.
+ * - libusb_try_lock_events() starts returning 1, indicating that another
+ * thread holds the event handling lock, even if the lock is uncontended.
+ * - libusb_event_handler_active() starts returning 1, indicating that
+ * another thread is doing event handling, even if that is not true.
+ * -# The above changes in behaviour result in the event handler stopping and
+ * giving up the events lock very quickly, giving the high-priority
+ * libusb_close() operation a "free ride" to acquire the events lock. All
+ * threads that are competing to do event handling become event waiters.
+ * -# With the events lock held inside libusb_close(), libusb can safely remove
+ * a file descriptor from the poll set, in the safety of knowledge that
+ * nobody is polling those descriptors or trying to access the poll set.
+ * -# After obtaining the events lock, the close operation completes very
+ * quickly (usually a matter of milliseconds) and then immediately releases
+ * the events lock.
+ * -# At the same time, the behaviour of libusb_event_handling_ok() and friends
+ * reverts to the original, documented behaviour.
+ * -# The release of the events lock causes the threads that are waiting for
+ * events to be woken up and to start competing to become event handlers
+ * again. One of them will succeed; it will then re-obtain the list of poll
+ * descriptors, and USB I/O will then continue as normal.
+ *
+ * libusb_open() is similar, and is actually a more simplistic case. Upon a
+ * call to libusb_open():
+ *
+ * -# The device is opened and a file descriptor is added to the poll set.
+ * -# libusb sends some dummy data on the event pipe, and records that it
+ * is trying to modify the poll descriptor set.
+ * -# The event handler is interrupted, and the same behaviour change as for
+ * libusb_close() takes effect, causing all event handling threads to become
+ * event waiters.
+ * -# The libusb_open() implementation takes its free ride to the events lock.
+ * -# Happy that it has successfully paused the events handler, libusb_open()
+ * releases the events lock.
+ * -# The event waiter threads are all woken up and compete to become event
+ * handlers again. The one that succeeds will obtain the list of poll
+ * descriptors again, which will include the addition of the new device.
+ *
+ * \subsection concl Closing remarks
+ *
+ * The above may seem a little complicated, but hopefully I have made it clear
+ * why such complications are necessary. Also, do not forget that this only
+ * applies to applications that take libusb's file descriptors and integrate
+ * them into their own polling loops.
+ *
+ * You may decide that it is OK for your multi-threaded application to ignore
+ * some of the rules and locks detailed above, because you don't think that
+ * two threads can ever be polling the descriptors at the same time. If that
+ * is the case, then that's good news for you because you don't have to worry.
+ * But be careful here; remember that the synchronous I/O functions do event
+ * handling internally. If you have one thread doing event handling in a loop
+ * (without implementing the rules and locking semantics documented above)
+ * and another trying to send a synchronous USB transfer, you will end up with
+ * two threads monitoring the same descriptors, and the above-described
+ * undesirable behaviour occurring. The solution is for your polling thread to
+ * play by the rules; the synchronous I/O functions do so, and this will result
+ * in them getting along in perfect harmony.
+ *
+ * If you do have a dedicated thread doing event handling, it is perfectly
+ * legal for it to take the event handling lock for long periods of time. Any
+ * synchronous I/O functions you call from other threads will transparently
+ * fall back to the "event waiters" mechanism detailed above. The only
+ * consideration that your event handling thread must apply is the one related
+ * to libusb_event_handling_ok(): you must call this before every poll(), and
+ * give up the events lock if instructed.
+ */
+
+int usbi_io_init(struct libusb_context *ctx)
+{
+ int r;
+
+ usbi_mutex_init(&ctx->flying_transfers_lock);
+ usbi_mutex_init(&ctx->events_lock);
+ usbi_mutex_init(&ctx->event_waiters_lock);
+ usbi_cond_init(&ctx->event_waiters_cond);
+ usbi_mutex_init(&ctx->event_data_lock);
+ usbi_tls_key_create(&ctx->event_handling_key);
+ list_init(&ctx->flying_transfers);
+ list_init(&ctx->event_sources);
+ list_init(&ctx->removed_event_sources);
+ list_init(&ctx->hotplug_msgs);
+ list_init(&ctx->completed_transfers);
+
+ r = usbi_create_event(&ctx->event);
+ if (r < 0)
+ goto err;
+
+ r = usbi_add_event_source(ctx, USBI_EVENT_OS_HANDLE(&ctx->event), USBI_EVENT_POLL_EVENTS);
+ if (r < 0)
+ goto err_destroy_event;
+
+#ifdef HAVE_OS_TIMER
+ r = usbi_create_timer(&ctx->timer);
+ if (r == 0) {
+ usbi_dbg(ctx, "using timer for timeouts");
+ r = usbi_add_event_source(ctx, USBI_TIMER_OS_HANDLE(&ctx->timer), USBI_TIMER_POLL_EVENTS);
+ if (r < 0)
+ goto err_destroy_timer;
+ } else {
+ usbi_dbg(ctx, "timer not available for timeouts");
+ }
+#endif
+
+ return 0;
+
+#ifdef HAVE_OS_TIMER
+err_destroy_timer:
+ usbi_destroy_timer(&ctx->timer);
+ usbi_remove_event_source(ctx, USBI_EVENT_OS_HANDLE(&ctx->event));
+#endif
+err_destroy_event:
+ usbi_destroy_event(&ctx->event);
+err:
+ usbi_mutex_destroy(&ctx->flying_transfers_lock);
+ usbi_mutex_destroy(&ctx->events_lock);
+ usbi_mutex_destroy(&ctx->event_waiters_lock);
+ usbi_cond_destroy(&ctx->event_waiters_cond);
+ usbi_mutex_destroy(&ctx->event_data_lock);
+ usbi_tls_key_delete(ctx->event_handling_key);
+ return r;
+}
+
+static void cleanup_removed_event_sources(struct libusb_context *ctx)
+{
+ struct usbi_event_source *ievent_source, *tmp;
+
+ for_each_removed_event_source_safe(ctx, ievent_source, tmp) {
+ list_del(&ievent_source->list);
+ free(ievent_source);
+ }
+}
+
+void usbi_io_exit(struct libusb_context *ctx)
+{
+#ifdef HAVE_OS_TIMER
+ if (usbi_using_timer(ctx)) {
+ usbi_remove_event_source(ctx, USBI_TIMER_OS_HANDLE(&ctx->timer));
+ usbi_destroy_timer(&ctx->timer);
+ }
+#endif
+ usbi_remove_event_source(ctx, USBI_EVENT_OS_HANDLE(&ctx->event));
+ usbi_destroy_event(&ctx->event);
+ usbi_mutex_destroy(&ctx->flying_transfers_lock);
+ usbi_mutex_destroy(&ctx->events_lock);
+ usbi_mutex_destroy(&ctx->event_waiters_lock);
+ usbi_cond_destroy(&ctx->event_waiters_cond);
+ usbi_mutex_destroy(&ctx->event_data_lock);
+ usbi_tls_key_delete(ctx->event_handling_key);
+ cleanup_removed_event_sources(ctx);
+ free(ctx->event_data);
+}
+
+static void calculate_timeout(struct usbi_transfer *itransfer)
+{
+ unsigned int timeout =
+ USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer)->timeout;
+
+ if (!timeout) {
+ TIMESPEC_CLEAR(&itransfer->timeout);
+ return;
+ }
+
+ usbi_get_monotonic_time(&itransfer->timeout);
+
+ itransfer->timeout.tv_sec += timeout / 1000U;
+ itransfer->timeout.tv_nsec += (timeout % 1000U) * 1000000L;
+ if (itransfer->timeout.tv_nsec >= NSEC_PER_SEC) {
+ ++itransfer->timeout.tv_sec;
+ itransfer->timeout.tv_nsec -= NSEC_PER_SEC;
+ }
+}
+
+/** \ingroup libusb_asyncio
+ * Allocate a libusb transfer with a specified number of isochronous packet
+ * descriptors. The returned transfer is pre-initialized for you. When the new
+ * transfer is no longer needed, it should be freed with
+ * libusb_free_transfer().
+ *
+ * Transfers intended for non-isochronous endpoints (e.g. control, bulk,
+ * interrupt) should specify an iso_packets count of zero.
+ *
+ * For transfers intended for isochronous endpoints, specify an appropriate
+ * number of packet descriptors to be allocated as part of the transfer.
+ * The returned transfer is not specially initialized for isochronous I/O;
+ * you are still required to set the
+ * \ref libusb_transfer::num_iso_packets "num_iso_packets" and
+ * \ref libusb_transfer::type "type" fields accordingly.
+ *
+ * It is safe to allocate a transfer with some isochronous packets and then
+ * use it on a non-isochronous endpoint. If you do this, ensure that at time
+ * of submission, num_iso_packets is 0 and that type is set appropriately.
+ *
+ * \param iso_packets number of isochronous packet descriptors to allocate. Must be non-negative.
+ * \returns a newly allocated transfer, or NULL on error
+ */
+DEFAULT_VISIBILITY
+struct libusb_transfer * LIBUSB_CALL libusb_alloc_transfer(
+ int iso_packets)
+{
+ size_t priv_size;
+ size_t alloc_size;
+ unsigned char *ptr;
+ struct usbi_transfer *itransfer;
+ struct libusb_transfer *transfer;
+
+ assert(iso_packets >= 0);
+ if (iso_packets < 0)
+ return NULL;
+
+ priv_size = PTR_ALIGN(usbi_backend.transfer_priv_size);
+ alloc_size = priv_size
+ + sizeof(struct usbi_transfer)
+ + sizeof(struct libusb_transfer)
+ + (sizeof(struct libusb_iso_packet_descriptor) * (size_t)iso_packets);
+ ptr = calloc(1, alloc_size);
+ if (!ptr)
+ return NULL;
+
+ itransfer = (struct usbi_transfer *)(ptr + priv_size);
+ itransfer->num_iso_packets = iso_packets;
+ itransfer->priv = ptr;
+ usbi_mutex_init(&itransfer->lock);
+ transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
+ return transfer;
+}
+
+/** \ingroup libusb_asyncio
+ * Free a transfer structure. This should be called for all transfers
+ * allocated with libusb_alloc_transfer().
+ *
+ * If the \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_BUFFER
+ * "LIBUSB_TRANSFER_FREE_BUFFER" flag is set and the transfer buffer is
+ * non-NULL, this function will also free the transfer buffer using the
+ * standard system memory allocator (e.g. free()).
+ *
+ * It is legal to call this function with a NULL transfer. In this case,
+ * the function will simply return safely.
+ *
+ * It is not legal to free an active transfer (one which has been submitted
+ * and has not yet completed).
+ *
+ * \param transfer the transfer to free
+ */
+void API_EXPORTED libusb_free_transfer(struct libusb_transfer *transfer)
+{
+ struct usbi_transfer *itransfer;
+ size_t priv_size;
+ unsigned char *ptr;
+
+ if (!transfer)
+ return;
+
+ usbi_dbg(TRANSFER_CTX(transfer), "transfer %p", transfer);
+ if (transfer->flags & LIBUSB_TRANSFER_FREE_BUFFER)
+ free(transfer->buffer);
+
+ itransfer = LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
+ usbi_mutex_destroy(&itransfer->lock);
+
+ priv_size = PTR_ALIGN(usbi_backend.transfer_priv_size);
+ ptr = (unsigned char *)itransfer - priv_size;
+ assert(ptr == itransfer->priv);
+ free(ptr);
+}
+
+/* iterates through the flying transfers, and rearms the timer based on the
+ * next upcoming timeout.
+ * must be called with flying_list locked.
+ * returns 0 on success or a LIBUSB_ERROR code on failure.
+ */
+#ifdef HAVE_OS_TIMER
+static int arm_timer_for_next_timeout(struct libusb_context *ctx)
+{
+ struct usbi_transfer *itransfer;
+
+ if (!usbi_using_timer(ctx))
+ return 0;
+
+ for_each_transfer(ctx, itransfer) {
+ struct timespec *cur_ts = &itransfer->timeout;
+
+ /* if we've reached transfers of infinite timeout, then we have no
+ * arming to do */
+ if (!TIMESPEC_IS_SET(cur_ts))
+ break;
+
+ /* act on first transfer that has not already been handled */
+ if (!(itransfer->timeout_flags & (USBI_TRANSFER_TIMEOUT_HANDLED | USBI_TRANSFER_OS_HANDLES_TIMEOUT))) {
+ usbi_dbg(ctx, "next timeout originally %ums", USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer)->timeout);
+ return usbi_arm_timer(&ctx->timer, cur_ts);
+ }
+ }
+
+ usbi_dbg(ctx, "no timeouts, disarming timer");
+ return usbi_disarm_timer(&ctx->timer);
+}
+#else
+static inline int arm_timer_for_next_timeout(struct libusb_context *ctx)
+{
+ UNUSED(ctx);
+ return 0;
+}
+#endif
+
+/* add a transfer to the (timeout-sorted) active transfers list.
+ * This function will return non 0 if fails to update the timer,
+ * in which case the transfer is *not* on the flying_transfers list. */
+static int add_to_flying_list(struct usbi_transfer *itransfer)
+{
+ struct usbi_transfer *cur;
+ struct timespec *timeout = &itransfer->timeout;
+ struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
+ int r = 0;
+ int first = 1;
+
+ calculate_timeout(itransfer);
+
+ /* if we have no other flying transfers, start the list with this one */
+ if (list_empty(&ctx->flying_transfers)) {
+ list_add(&itransfer->list, &ctx->flying_transfers);
+ goto out;
+ }
+
+ /* if we have infinite timeout, append to end of list */
+ if (!TIMESPEC_IS_SET(timeout)) {
+ list_add_tail(&itransfer->list, &ctx->flying_transfers);
+ /* first is irrelevant in this case */
+ goto out;
+ }
+
+ /* otherwise, find appropriate place in list */
+ for_each_transfer(ctx, cur) {
+ /* find first timeout that occurs after the transfer in question */
+ struct timespec *cur_ts = &cur->timeout;
+
+ if (!TIMESPEC_IS_SET(cur_ts) || TIMESPEC_CMP(cur_ts, timeout, >)) {
+ list_add_tail(&itransfer->list, &cur->list);
+ goto out;
+ }
+ first = 0;
+ }
+ /* first is 0 at this stage (list not empty) */
+
+ /* otherwise we need to be inserted at the end */
+ list_add_tail(&itransfer->list, &ctx->flying_transfers);
+out:
+#ifdef HAVE_OS_TIMER
+ if (first && usbi_using_timer(ctx) && TIMESPEC_IS_SET(timeout)) {
+ /* if this transfer has the lowest timeout of all active transfers,
+ * rearm the timer with this transfer's timeout */
+ usbi_dbg(ctx, "arm timer for timeout in %ums (first in line)",
+ USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer)->timeout);
+ r = usbi_arm_timer(&ctx->timer, timeout);
+ }
+#else
+ UNUSED(first);
+#endif
+
+ if (r)
+ list_del(&itransfer->list);
+
+ return r;
+}
+
+/* remove a transfer from the active transfers list.
+ * This function will *always* remove the transfer from the
+ * flying_transfers list. It will return a LIBUSB_ERROR code
+ * if it fails to update the timer for the next timeout. */
+static int remove_from_flying_list(struct usbi_transfer *itransfer)
+{
+ struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
+ int rearm_timer;
+ int r = 0;
+
+ usbi_mutex_lock(&ctx->flying_transfers_lock);
+ rearm_timer = (TIMESPEC_IS_SET(&itransfer->timeout) &&
+ list_first_entry(&ctx->flying_transfers, struct usbi_transfer, list) == itransfer);
+ list_del(&itransfer->list);
+ if (rearm_timer)
+ r = arm_timer_for_next_timeout(ctx);
+ usbi_mutex_unlock(&ctx->flying_transfers_lock);
+
+ return r;
+}
+
+/** \ingroup libusb_asyncio
+ * Submit a transfer. This function will fire off the USB transfer and then
+ * return immediately.
+ *
+ * \param transfer the transfer to submit
+ * \returns 0 on success
+ * \returns LIBUSB_ERROR_NO_DEVICE if the device has been disconnected
+ * \returns LIBUSB_ERROR_BUSY if the transfer has already been submitted.
+ * \returns LIBUSB_ERROR_NOT_SUPPORTED if the transfer flags are not supported
+ * by the operating system.
+ * \returns LIBUSB_ERROR_INVALID_PARAM if the transfer size is larger than
+ * the operating system and/or hardware can support (see \ref asynclimits)
+ * \returns another LIBUSB_ERROR code on other failure
+ */
+int API_EXPORTED libusb_submit_transfer(struct libusb_transfer *transfer)
+{
+ struct usbi_transfer *itransfer =
+ LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
+ struct libusb_context *ctx = TRANSFER_CTX(transfer);
+ int r;
+
+ usbi_dbg(ctx, "transfer %p", transfer);
+
+ /*
+ * Important note on locking, this function takes / releases locks
+ * in the following order:
+ * take flying_transfers_lock
+ * take itransfer->lock
+ * clear transfer
+ * add to flying_transfers list
+ * release flying_transfers_lock
+ * submit transfer
+ * release itransfer->lock
+ * if submit failed:
+ * take flying_transfers_lock
+ * remove from flying_transfers list
+ * release flying_transfers_lock
+ *
+ * Note that it takes locks in the order a-b and then releases them
+ * in the same order a-b. This is somewhat unusual but not wrong,
+ * release order is not important as long as *all* locks are released
+ * before re-acquiring any locks.
+ *
+ * This means that the ordering of first releasing itransfer->lock
+ * and then re-acquiring the flying_transfers_list on error is
+ * important and must not be changed!
+ *
+ * This is done this way because when we take both locks we must always
+ * take flying_transfers_lock first to avoid ab-ba style deadlocks with
+ * the timeout handling and usbi_handle_disconnect paths.
+ *
+ * And we cannot release itransfer->lock before the submission is
+ * complete otherwise timeout handling for transfers with short
+ * timeouts may run before submission.
+ */
+ usbi_mutex_lock(&ctx->flying_transfers_lock);
+ usbi_mutex_lock(&itransfer->lock);
+ if (itransfer->state_flags & USBI_TRANSFER_IN_FLIGHT) {
+ usbi_mutex_unlock(&ctx->flying_transfers_lock);
+ usbi_mutex_unlock(&itransfer->lock);
+ return LIBUSB_ERROR_BUSY;
+ }
+ itransfer->transferred = 0;
+ itransfer->state_flags = 0;
+ itransfer->timeout_flags = 0;
+ r = add_to_flying_list(itransfer);
+ if (r) {
+ usbi_mutex_unlock(&ctx->flying_transfers_lock);
+ usbi_mutex_unlock(&itransfer->lock);
+ return r;
+ }
+ /*
+ * We must release the flying transfers lock here, because with
+ * some backends the submit_transfer method is synchronous.
+ */
+ usbi_mutex_unlock(&ctx->flying_transfers_lock);
+
+ r = usbi_backend.submit_transfer(itransfer);
+ if (r == LIBUSB_SUCCESS) {
+ itransfer->state_flags |= USBI_TRANSFER_IN_FLIGHT;
+ /* keep a reference to this device */
+ libusb_ref_device(transfer->dev_handle->dev);
+ }
+ usbi_mutex_unlock(&itransfer->lock);
+
+ if (r != LIBUSB_SUCCESS)
+ remove_from_flying_list(itransfer);
+
+ return r;
+}
+
+/** \ingroup libusb_asyncio
+ * Asynchronously cancel a previously submitted transfer.
+ * This function returns immediately, but this does not indicate cancellation
+ * is complete. Your callback function will be invoked at some later time
+ * with a transfer status of
+ * \ref libusb_transfer_status::LIBUSB_TRANSFER_CANCELLED
+ * "LIBUSB_TRANSFER_CANCELLED."
+ *
+ * \param transfer the transfer to cancel
+ * \returns 0 on success
+ * \returns LIBUSB_ERROR_NOT_FOUND if the transfer is not in progress,
+ * already complete, or already cancelled.
+ * \returns a LIBUSB_ERROR code on failure
+ */
+int API_EXPORTED libusb_cancel_transfer(struct libusb_transfer *transfer)
+{
+ struct usbi_transfer *itransfer =
+ LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
+ struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
+ int r;
+
+ usbi_dbg(ctx, "transfer %p", transfer );
+ usbi_mutex_lock(&itransfer->lock);
+ if (!(itransfer->state_flags & USBI_TRANSFER_IN_FLIGHT)
+ || (itransfer->state_flags & USBI_TRANSFER_CANCELLING)) {
+ r = LIBUSB_ERROR_NOT_FOUND;
+ goto out;
+ }
+ r = usbi_backend.cancel_transfer(itransfer);
+ if (r < 0) {
+ if (r != LIBUSB_ERROR_NOT_FOUND &&
+ r != LIBUSB_ERROR_NO_DEVICE)
+ usbi_err(ctx, "cancel transfer failed error %d", r);
+ else
+ usbi_dbg(ctx, "cancel transfer failed error %d", r);
+
+ if (r == LIBUSB_ERROR_NO_DEVICE)
+ itransfer->state_flags |= USBI_TRANSFER_DEVICE_DISAPPEARED;
+ }
+
+ itransfer->state_flags |= USBI_TRANSFER_CANCELLING;
+
+out:
+ usbi_mutex_unlock(&itransfer->lock);
+ return r;
+}
+
+/** \ingroup libusb_asyncio
+ * Set a transfers bulk stream id. Note users are advised to use
+ * libusb_fill_bulk_stream_transfer() instead of calling this function
+ * directly.
+ *
+ * Since version 1.0.19, \ref LIBUSB_API_VERSION >= 0x01000103
+ *
+ * \param transfer the transfer to set the stream id for
+ * \param stream_id the stream id to set
+ * \see libusb_alloc_streams()
+ */
+void API_EXPORTED libusb_transfer_set_stream_id(
+ struct libusb_transfer *transfer, uint32_t stream_id)
+{
+ struct usbi_transfer *itransfer =
+ LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
+
+ itransfer->stream_id = stream_id;
+}
+
+/** \ingroup libusb_asyncio
+ * Get a transfers bulk stream id.
+ *
+ * Since version 1.0.19, \ref LIBUSB_API_VERSION >= 0x01000103
+ *
+ * \param transfer the transfer to get the stream id for
+ * \returns the stream id for the transfer
+ */
+uint32_t API_EXPORTED libusb_transfer_get_stream_id(
+ struct libusb_transfer *transfer)
+{
+ struct usbi_transfer *itransfer =
+ LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
+
+ return itransfer->stream_id;
+}
+
+/* Handle completion of a transfer (completion might be an error condition).
+ * This will invoke the user-supplied callback function, which may end up
+ * freeing the transfer. Therefore you cannot use the transfer structure
+ * after calling this function, and you should free all backend-specific
+ * data before calling it.
+ * Do not call this function with the usbi_transfer lock held. User-specified
+ * callback functions may attempt to directly resubmit the transfer, which
+ * will attempt to take the lock. */
+int usbi_handle_transfer_completion(struct usbi_transfer *itransfer,
+ enum libusb_transfer_status status)
+{
+ struct libusb_transfer *transfer =
+ USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
+ struct libusb_device_handle *dev_handle = transfer->dev_handle;
+ struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
+ uint8_t flags;
+ int r;
+
+ r = remove_from_flying_list(itransfer);
+ if (r < 0)
+ usbi_err(ctx, "failed to set timer for next timeout");
+
+ usbi_mutex_lock(&itransfer->lock);
+ itransfer->state_flags &= ~USBI_TRANSFER_IN_FLIGHT;
+ usbi_mutex_unlock(&itransfer->lock);
+
+ if (status == LIBUSB_TRANSFER_COMPLETED
+ && transfer->flags & LIBUSB_TRANSFER_SHORT_NOT_OK) {
+ int rqlen = transfer->length;
+ if (transfer->type == LIBUSB_TRANSFER_TYPE_CONTROL)
+ rqlen -= LIBUSB_CONTROL_SETUP_SIZE;
+ if (rqlen != itransfer->transferred) {
+ usbi_dbg(ctx, "interpreting short transfer as error");
+ status = LIBUSB_TRANSFER_ERROR;
+ }
+ }
+
+ flags = transfer->flags;
+ transfer->status = status;
+ transfer->actual_length = itransfer->transferred;
+ usbi_dbg(ctx, "transfer %p has callback %p", transfer, transfer->callback);
+ if (transfer->callback)
+ transfer->callback(transfer);
+ /* transfer might have been freed by the above call, do not use from
+ * this point. */
+ if (flags & LIBUSB_TRANSFER_FREE_TRANSFER)
+ libusb_free_transfer(transfer);
+ libusb_unref_device(dev_handle->dev);
+ return r;
+}
+
+/* Similar to usbi_handle_transfer_completion() but exclusively for transfers
+ * that were asynchronously cancelled. The same concerns w.r.t. freeing of
+ * transfers exist here.
+ * Do not call this function with the usbi_transfer lock held. User-specified
+ * callback functions may attempt to directly resubmit the transfer, which
+ * will attempt to take the lock. */
+int usbi_handle_transfer_cancellation(struct usbi_transfer *itransfer)
+{
+ struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
+ uint8_t timed_out;
+
+ usbi_mutex_lock(&ctx->flying_transfers_lock);
+ timed_out = itransfer->timeout_flags & USBI_TRANSFER_TIMED_OUT;
+ usbi_mutex_unlock(&ctx->flying_transfers_lock);
+
+ /* if the URB was cancelled due to timeout, report timeout to the user */
+ if (timed_out) {
+ usbi_dbg(ctx, "detected timeout cancellation");
+ return usbi_handle_transfer_completion(itransfer, LIBUSB_TRANSFER_TIMED_OUT);
+ }
+
+ /* otherwise its a normal async cancel */
+ return usbi_handle_transfer_completion(itransfer, LIBUSB_TRANSFER_CANCELLED);
+}
+
+/* Add a completed transfer to the completed_transfers list of the
+ * context and signal the event. The backend's handle_transfer_completion()
+ * function will be called the next time an event handler runs. */
+void usbi_signal_transfer_completion(struct usbi_transfer *itransfer)
+{
+ libusb_device_handle *dev_handle = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer)->dev_handle;
+
+ if (dev_handle) {
+ struct libusb_context *ctx = HANDLE_CTX(dev_handle);
+ unsigned int event_flags;
+
+ usbi_mutex_lock(&ctx->event_data_lock);
+ event_flags = ctx->event_flags;
+ ctx->event_flags |= USBI_EVENT_TRANSFER_COMPLETED;
+ list_add_tail(&itransfer->completed_list, &ctx->completed_transfers);
+ if (!event_flags)
+ usbi_signal_event(&ctx->event);
+ usbi_mutex_unlock(&ctx->event_data_lock);
+ }
+}
+
+/** \ingroup libusb_poll
+ * Attempt to acquire the event handling lock. This lock is used to ensure that
+ * only one thread is monitoring libusb event sources at any one time.
+ *
+ * You only need to use this lock if you are developing an application
+ * which calls poll() or select() on libusb's file descriptors directly.
+ * If you stick to libusb's event handling loop functions (e.g.
+ * libusb_handle_events()) then you do not need to be concerned with this
+ * locking.
+ *
+ * While holding this lock, you are trusted to actually be handling events.
+ * If you are no longer handling events, you must call libusb_unlock_events()
+ * as soon as possible.
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \returns 0 if the lock was obtained successfully
+ * \returns 1 if the lock was not obtained (i.e. another thread holds the lock)
+ * \ref libusb_mtasync
+ */
+int API_EXPORTED libusb_try_lock_events(libusb_context *ctx)
+{
+ int r;
+ unsigned int ru;
+
+ ctx = usbi_get_context(ctx);
+
+ /* is someone else waiting to close a device? if so, don't let this thread
+ * start event handling */
+ usbi_mutex_lock(&ctx->event_data_lock);
+ ru = ctx->device_close;
+ usbi_mutex_unlock(&ctx->event_data_lock);
+ if (ru) {
+ usbi_dbg(ctx, "someone else is closing a device");
+ return 1;
+ }
+
+ r = usbi_mutex_trylock(&ctx->events_lock);
+ if (!r)
+ return 1;
+
+ ctx->event_handler_active = 1;
+ return 0;
+}
+
+/** \ingroup libusb_poll
+ * Acquire the event handling lock, blocking until successful acquisition if
+ * it is contended. This lock is used to ensure that only one thread is
+ * monitoring libusb event sources at any one time.
+ *
+ * You only need to use this lock if you are developing an application
+ * which calls poll() or select() on libusb's file descriptors directly.
+ * If you stick to libusb's event handling loop functions (e.g.
+ * libusb_handle_events()) then you do not need to be concerned with this
+ * locking.
+ *
+ * While holding this lock, you are trusted to actually be handling events.
+ * If you are no longer handling events, you must call libusb_unlock_events()
+ * as soon as possible.
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \ref libusb_mtasync
+ */
+void API_EXPORTED libusb_lock_events(libusb_context *ctx)
+{
+ ctx = usbi_get_context(ctx);
+ usbi_mutex_lock(&ctx->events_lock);
+ ctx->event_handler_active = 1;
+}
+
+/** \ingroup libusb_poll
+ * Release the lock previously acquired with libusb_try_lock_events() or
+ * libusb_lock_events(). Releasing this lock will wake up any threads blocked
+ * on libusb_wait_for_event().
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \ref libusb_mtasync
+ */
+void API_EXPORTED libusb_unlock_events(libusb_context *ctx)
+{
+ ctx = usbi_get_context(ctx);
+ ctx->event_handler_active = 0;
+ usbi_mutex_unlock(&ctx->events_lock);
+
+ /* FIXME: perhaps we should be a bit more efficient by not broadcasting
+ * the availability of the events lock when we are modifying pollfds
+ * (check ctx->device_close)? */
+ usbi_mutex_lock(&ctx->event_waiters_lock);
+ usbi_cond_broadcast(&ctx->event_waiters_cond);
+ usbi_mutex_unlock(&ctx->event_waiters_lock);
+}
+
+/** \ingroup libusb_poll
+ * Determine if it is still OK for this thread to be doing event handling.
+ *
+ * Sometimes, libusb needs to temporarily pause all event handlers, and this
+ * is the function you should use before polling file descriptors to see if
+ * this is the case.
+ *
+ * If this function instructs your thread to give up the events lock, you
+ * should just continue the usual logic that is documented in \ref libusb_mtasync.
+ * On the next iteration, your thread will fail to obtain the events lock,
+ * and will hence become an event waiter.
+ *
+ * This function should be called while the events lock is held: you don't
+ * need to worry about the results of this function if your thread is not
+ * the current event handler.
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \returns 1 if event handling can start or continue
+ * \returns 0 if this thread must give up the events lock
+ * \ref fullstory "Multi-threaded I/O: the full story"
+ */
+int API_EXPORTED libusb_event_handling_ok(libusb_context *ctx)
+{
+ unsigned int r;
+
+ ctx = usbi_get_context(ctx);
+
+ /* is someone else waiting to close a device? if so, don't let this thread
+ * continue event handling */
+ usbi_mutex_lock(&ctx->event_data_lock);
+ r = ctx->device_close;
+ usbi_mutex_unlock(&ctx->event_data_lock);
+ if (r) {
+ usbi_dbg(ctx, "someone else is closing a device");
+ return 0;
+ }
+
+ return 1;
+}
+
+
+/** \ingroup libusb_poll
+ * Determine if an active thread is handling events (i.e. if anyone is holding
+ * the event handling lock).
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \returns 1 if a thread is handling events
+ * \returns 0 if there are no threads currently handling events
+ * \ref libusb_mtasync
+ */
+int API_EXPORTED libusb_event_handler_active(libusb_context *ctx)
+{
+ unsigned int r;
+
+ ctx = usbi_get_context(ctx);
+
+ /* is someone else waiting to close a device? if so, don't let this thread
+ * start event handling -- indicate that event handling is happening */
+ usbi_mutex_lock(&ctx->event_data_lock);
+ r = ctx->device_close;
+ usbi_mutex_unlock(&ctx->event_data_lock);
+ if (r) {
+ usbi_dbg(ctx, "someone else is closing a device");
+ return 1;
+ }
+
+ return ctx->event_handler_active;
+}
+
+/** \ingroup libusb_poll
+ * Interrupt any active thread that is handling events. This is mainly useful
+ * for interrupting a dedicated event handling thread when an application
+ * wishes to call libusb_exit().
+ *
+ * Since version 1.0.21, \ref LIBUSB_API_VERSION >= 0x01000105
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \ref libusb_mtasync
+ */
+void API_EXPORTED libusb_interrupt_event_handler(libusb_context *ctx)
+{
+ unsigned int event_flags;
+
+ usbi_dbg(ctx, " ");
+
+ ctx = usbi_get_context(ctx);
+ usbi_mutex_lock(&ctx->event_data_lock);
+
+ event_flags = ctx->event_flags;
+ ctx->event_flags |= USBI_EVENT_USER_INTERRUPT;
+ if (!event_flags)
+ usbi_signal_event(&ctx->event);
+
+ usbi_mutex_unlock(&ctx->event_data_lock);
+}
+
+/** \ingroup libusb_poll
+ * Acquire the event waiters lock. This lock is designed to be obtained under
+ * the situation where you want to be aware when events are completed, but
+ * some other thread is event handling so calling libusb_handle_events() is not
+ * allowed.
+ *
+ * You then obtain this lock, re-check that another thread is still handling
+ * events, then call libusb_wait_for_event().
+ *
+ * You only need to use this lock if you are developing an application
+ * which calls poll() or select() on libusb's file descriptors directly,
+ * <b>and</b> may potentially be handling events from 2 threads simultaneously.
+ * If you stick to libusb's event handling loop functions (e.g.
+ * libusb_handle_events()) then you do not need to be concerned with this
+ * locking.
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \ref libusb_mtasync
+ */
+void API_EXPORTED libusb_lock_event_waiters(libusb_context *ctx)
+{
+ ctx = usbi_get_context(ctx);
+ usbi_mutex_lock(&ctx->event_waiters_lock);
+}
+
+/** \ingroup libusb_poll
+ * Release the event waiters lock.
+ * \param ctx the context to operate on, or NULL for the default context
+ * \ref libusb_mtasync
+ */
+void API_EXPORTED libusb_unlock_event_waiters(libusb_context *ctx)
+{
+ ctx = usbi_get_context(ctx);
+ usbi_mutex_unlock(&ctx->event_waiters_lock);
+}
+
+/** \ingroup libusb_poll
+ * Wait for another thread to signal completion of an event. Must be called
+ * with the event waiters lock held, see libusb_lock_event_waiters().
+ *
+ * This function will block until any of the following conditions are met:
+ * -# The timeout expires
+ * -# A transfer completes
+ * -# A thread releases the event handling lock through libusb_unlock_events()
+ *
+ * Condition 1 is obvious. Condition 2 unblocks your thread <em>after</em>
+ * the callback for the transfer has completed. Condition 3 is important
+ * because it means that the thread that was previously handling events is no
+ * longer doing so, so if any events are to complete, another thread needs to
+ * step up and start event handling.
+ *
+ * This function releases the event waiters lock before putting your thread
+ * to sleep, and reacquires the lock as it is being woken up.
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \param tv maximum timeout for this blocking function. A NULL value
+ * indicates unlimited timeout.
+ * \returns 0 after a transfer completes or another thread stops event handling
+ * \returns 1 if the timeout expired
+ * \returns LIBUSB_ERROR_INVALID_PARAM if timeval is invalid
+ * \ref libusb_mtasync
+ */
+int API_EXPORTED libusb_wait_for_event(libusb_context *ctx, struct timeval *tv)
+{
+ int r;
+
+ ctx = usbi_get_context(ctx);
+ if (!tv) {
+ usbi_cond_wait(&ctx->event_waiters_cond, &ctx->event_waiters_lock);
+ return 0;
+ }
+
+ if (!TIMEVAL_IS_VALID(tv))
+ return LIBUSB_ERROR_INVALID_PARAM;
+
+ r = usbi_cond_timedwait(&ctx->event_waiters_cond,
+ &ctx->event_waiters_lock, tv);
+ if (r < 0)
+ return r == LIBUSB_ERROR_TIMEOUT;
+
+ return 0;
+}
+
+static void handle_timeout(struct usbi_transfer *itransfer)
+{
+ struct libusb_transfer *transfer =
+ USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
+ int r;
+
+ itransfer->timeout_flags |= USBI_TRANSFER_TIMEOUT_HANDLED;
+ r = libusb_cancel_transfer(transfer);
+ if (r == LIBUSB_SUCCESS)
+ itransfer->timeout_flags |= USBI_TRANSFER_TIMED_OUT;
+ else
+ usbi_warn(TRANSFER_CTX(transfer),
+ "async cancel failed %d", r);
+}
+
+static void handle_timeouts_locked(struct libusb_context *ctx)
+{
+ struct timespec systime;
+ struct usbi_transfer *itransfer;
+
+ if (list_empty(&ctx->flying_transfers))
+ return;
+
+ /* get current time */
+ usbi_get_monotonic_time(&systime);
+
+ /* iterate through flying transfers list, finding all transfers that
+ * have expired timeouts */
+ for_each_transfer(ctx, itransfer) {
+ struct timespec *cur_ts = &itransfer->timeout;
+
+ /* if we've reached transfers of infinite timeout, we're all done */
+ if (!TIMESPEC_IS_SET(cur_ts))
+ return;
+
+ /* ignore timeouts we've already handled */
+ if (itransfer->timeout_flags & (USBI_TRANSFER_TIMEOUT_HANDLED | USBI_TRANSFER_OS_HANDLES_TIMEOUT))
+ continue;
+
+ /* if transfer has non-expired timeout, nothing more to do */
+ if (TIMESPEC_CMP(cur_ts, &systime, >))
+ return;
+
+ /* otherwise, we've got an expired timeout to handle */
+ handle_timeout(itransfer);
+ }
+}
+
+static void handle_timeouts(struct libusb_context *ctx)
+{
+ ctx = usbi_get_context(ctx);
+ usbi_mutex_lock(&ctx->flying_transfers_lock);
+ handle_timeouts_locked(ctx);
+ usbi_mutex_unlock(&ctx->flying_transfers_lock);
+}
+
+static int handle_event_trigger(struct libusb_context *ctx)
+{
+ struct list_head hotplug_msgs;
+ int hotplug_event = 0;
+ int r = 0;
+
+ usbi_dbg(ctx, "event triggered");
+
+ list_init(&hotplug_msgs);
+
+ /* take the the event data lock while processing events */
+ usbi_mutex_lock(&ctx->event_data_lock);
+
+ /* check if someone modified the event sources */
+ if (ctx->event_flags & USBI_EVENT_EVENT_SOURCES_MODIFIED)
+ usbi_dbg(ctx, "someone updated the event sources");
+
+ if (ctx->event_flags & USBI_EVENT_USER_INTERRUPT) {
+ usbi_dbg(ctx, "someone purposefully interrupted");
+ ctx->event_flags &= ~USBI_EVENT_USER_INTERRUPT;
+ }
+
+ if (ctx->event_flags & USBI_EVENT_HOTPLUG_CB_DEREGISTERED) {
+ usbi_dbg(ctx, "someone unregistered a hotplug cb");
+ ctx->event_flags &= ~USBI_EVENT_HOTPLUG_CB_DEREGISTERED;
+ hotplug_event = 1;
+ }
+
+ /* check if someone is closing a device */
+ if (ctx->event_flags & USBI_EVENT_DEVICE_CLOSE)
+ usbi_dbg(ctx, "someone is closing a device");
+
+ /* check for any pending hotplug messages */
+ if (ctx->event_flags & USBI_EVENT_HOTPLUG_MSG_PENDING) {
+ usbi_dbg(ctx, "hotplug message received");
+ ctx->event_flags &= ~USBI_EVENT_HOTPLUG_MSG_PENDING;
+ hotplug_event = 1;
+ assert(!list_empty(&ctx->hotplug_msgs));
+ list_cut(&hotplug_msgs, &ctx->hotplug_msgs);
+ }
+
+ /* complete any pending transfers */
+ if (ctx->event_flags & USBI_EVENT_TRANSFER_COMPLETED) {
+ struct usbi_transfer *itransfer, *tmp;
+ struct list_head completed_transfers;
+
+ assert(!list_empty(&ctx->completed_transfers));
+ list_cut(&completed_transfers, &ctx->completed_transfers);
+ usbi_mutex_unlock(&ctx->event_data_lock);
+
+ __for_each_completed_transfer_safe(&completed_transfers, itransfer, tmp) {
+ list_del(&itransfer->completed_list);
+ r = usbi_backend.handle_transfer_completion(itransfer);
+ if (r) {
+ usbi_err(ctx, "backend handle_transfer_completion failed with error %d", r);
+ break;
+ }
+ }
+
+ usbi_mutex_lock(&ctx->event_data_lock);
+ if (!list_empty(&completed_transfers)) {
+ /* an error occurred, put the remaining transfers back on the list */
+ list_splice_front(&completed_transfers, &ctx->completed_transfers);
+ } else if (list_empty(&ctx->completed_transfers)) {
+ ctx->event_flags &= ~USBI_EVENT_TRANSFER_COMPLETED;
+ }
+ }
+
+ /* if no further pending events, clear the event */
+ if (!ctx->event_flags)
+ usbi_clear_event(&ctx->event);
+
+ usbi_mutex_unlock(&ctx->event_data_lock);
+
+ /* process the hotplug events, if any */
+ if (hotplug_event)
+ usbi_hotplug_process(ctx, &hotplug_msgs);
+
+ return r;
+}
+
+#ifdef HAVE_OS_TIMER
+static int handle_timer_trigger(struct libusb_context *ctx)
+{
+ int r;
+
+ usbi_mutex_lock(&ctx->flying_transfers_lock);
+
+ /* process the timeout that just happened */
+ handle_timeouts_locked(ctx);
+
+ /* arm for next timeout */
+ r = arm_timer_for_next_timeout(ctx);
+
+ usbi_mutex_unlock(&ctx->flying_transfers_lock);
+
+ return r;
+}
+#endif
+
+/* do the actual event handling. assumes that no other thread is concurrently
+ * doing the same thing. */
+static int handle_events(struct libusb_context *ctx, struct timeval *tv)
+{
+ struct usbi_reported_events reported_events;
+ int r, timeout_ms;
+
+ /* prevent attempts to recursively handle events (e.g. calling into
+ * libusb_handle_events() from within a hotplug or transfer callback) */
+ if (usbi_handling_events(ctx))
+ return LIBUSB_ERROR_BUSY;
+
+ /* only reallocate the event source data when the list of event sources has
+ * been modified since the last handle_events(), otherwise reuse them to
+ * save the additional overhead */
+ usbi_mutex_lock(&ctx->event_data_lock);
+ if (ctx->event_flags & USBI_EVENT_EVENT_SOURCES_MODIFIED) {
+ usbi_dbg(ctx, "event sources modified, reallocating event data");
+
+ /* free anything removed since we last ran */
+ cleanup_removed_event_sources(ctx);
+
+ r = usbi_alloc_event_data(ctx);
+ if (r) {
+ usbi_mutex_unlock(&ctx->event_data_lock);
+ return r;
+ }
+
+ /* reset the flag now that we have the updated list */
+ ctx->event_flags &= ~USBI_EVENT_EVENT_SOURCES_MODIFIED;
+
+ /* if no further pending events, clear the event so that we do
+ * not immediately return from the wait function */
+ if (!ctx->event_flags)
+ usbi_clear_event(&ctx->event);
+ }
+ usbi_mutex_unlock(&ctx->event_data_lock);
+
+ timeout_ms = (int)(tv->tv_sec * 1000) + (tv->tv_usec / 1000);
+
+ /* round up to next millisecond */
+ if (tv->tv_usec % 1000)
+ timeout_ms++;
+
+ reported_events.event_bits = 0;
+
+ usbi_start_event_handling(ctx);
+
+ r = usbi_wait_for_events(ctx, &reported_events, timeout_ms);
+ if (r != LIBUSB_SUCCESS) {
+ if (r == LIBUSB_ERROR_TIMEOUT) {
+ handle_timeouts(ctx);
+ r = LIBUSB_SUCCESS;
+ }
+ goto done;
+ }
+
+ if (reported_events.event_triggered) {
+ r = handle_event_trigger(ctx);
+ if (r) {
+ /* return error code */
+ goto done;
+ }
+ }
+
+#ifdef HAVE_OS_TIMER
+ if (reported_events.timer_triggered) {
+ r = handle_timer_trigger(ctx);
+ if (r) {
+ /* return error code */
+ goto done;
+ }
+ }
+#endif
+
+ if (!reported_events.num_ready)
+ goto done;
+
+ r = usbi_backend.handle_events(ctx, reported_events.event_data,
+ reported_events.event_data_count, reported_events.num_ready);
+ if (r)
+ usbi_err(ctx, "backend handle_events failed with error %d", r);
+
+done:
+ usbi_end_event_handling(ctx);
+ return r;
+}
+
+/* returns the smallest of:
+ * 1. timeout of next URB
+ * 2. user-supplied timeout
+ * returns 1 if there is an already-expired timeout, otherwise returns 0
+ * and populates out
+ */
+static int get_next_timeout(libusb_context *ctx, struct timeval *tv,
+ struct timeval *out)
+{
+ struct timeval timeout;
+ int r = libusb_get_next_timeout(ctx, &timeout);
+ if (r) {
+ /* timeout already expired? */
+ if (!timerisset(&timeout))
+ return 1;
+
+ /* choose the smallest of next URB timeout or user specified timeout */
+ if (timercmp(&timeout, tv, <))
+ *out = timeout;
+ else
+ *out = *tv;
+ } else {
+ *out = *tv;
+ }
+ return 0;
+}
+
+/** \ingroup libusb_poll
+ * Handle any pending events.
+ *
+ * libusb determines "pending events" by checking if any timeouts have expired
+ * and by checking the set of file descriptors for activity.
+ *
+ * If a zero timeval is passed, this function will handle any already-pending
+ * events and then immediately return in non-blocking style.
+ *
+ * If a non-zero timeval is passed and no events are currently pending, this
+ * function will block waiting for events to handle up until the specified
+ * timeout. If an event arrives or a signal is raised, this function will
+ * return early.
+ *
+ * If the parameter completed is not NULL then <em>after obtaining the event
+ * handling lock</em> this function will return immediately if the integer
+ * pointed to is not 0. This allows for race free waiting for the completion
+ * of a specific transfer.
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \param tv the maximum time to block waiting for events, or an all zero
+ * timeval struct for non-blocking mode
+ * \param completed pointer to completion integer to check, or NULL
+ * \returns 0 on success
+ * \returns LIBUSB_ERROR_INVALID_PARAM if timeval is invalid
+ * \returns another LIBUSB_ERROR code on other failure
+ * \ref libusb_mtasync
+ */
+int API_EXPORTED libusb_handle_events_timeout_completed(libusb_context *ctx,
+ struct timeval *tv, int *completed)
+{
+ int r;
+ struct timeval poll_timeout;
+
+ if (!TIMEVAL_IS_VALID(tv))
+ return LIBUSB_ERROR_INVALID_PARAM;
+
+ ctx = usbi_get_context(ctx);
+ r = get_next_timeout(ctx, tv, &poll_timeout);
+ if (r) {
+ /* timeout already expired */
+ handle_timeouts(ctx);
+ return 0;
+ }
+
+retry:
+ if (libusb_try_lock_events(ctx) == 0) {
+ if (completed == NULL || !*completed) {
+ /* we obtained the event lock: do our own event handling */
+ usbi_dbg(ctx, "doing our own event handling");
+ r = handle_events(ctx, &poll_timeout);
+ }
+ libusb_unlock_events(ctx);
+ return r;
+ }
+
+ /* another thread is doing event handling. wait for thread events that
+ * notify event completion. */
+ libusb_lock_event_waiters(ctx);
+
+ if (completed && *completed)
+ goto already_done;
+
+ if (!libusb_event_handler_active(ctx)) {
+ /* we hit a race: whoever was event handling earlier finished in the
+ * time it took us to reach this point. try the cycle again. */
+ libusb_unlock_event_waiters(ctx);
+ usbi_dbg(ctx, "event handler was active but went away, retrying");
+ goto retry;
+ }
+
+ usbi_dbg(ctx, "another thread is doing event handling");
+ r = libusb_wait_for_event(ctx, &poll_timeout);
+
+already_done:
+ libusb_unlock_event_waiters(ctx);
+
+ if (r < 0)
+ return r;
+ else if (r == 1)
+ handle_timeouts(ctx);
+ return 0;
+}
+
+/** \ingroup libusb_poll
+ * Handle any pending events
+ *
+ * Like libusb_handle_events_timeout_completed(), but without the completed
+ * parameter, calling this function is equivalent to calling
+ * libusb_handle_events_timeout_completed() with a NULL completed parameter.
+ *
+ * This function is kept primarily for backwards compatibility.
+ * All new code should call libusb_handle_events_completed() or
+ * libusb_handle_events_timeout_completed() to avoid race conditions.
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \param tv the maximum time to block waiting for events, or an all zero
+ * timeval struct for non-blocking mode
+ * \returns 0 on success, or a LIBUSB_ERROR code on failure
+ */
+int API_EXPORTED libusb_handle_events_timeout(libusb_context *ctx,
+ struct timeval *tv)
+{
+ return libusb_handle_events_timeout_completed(ctx, tv, NULL);
+}
+
+/** \ingroup libusb_poll
+ * Handle any pending events in blocking mode. There is currently a timeout
+ * hard-coded at 60 seconds but we plan to make it unlimited in future. For
+ * finer control over whether this function is blocking or non-blocking, or
+ * for control over the timeout, use libusb_handle_events_timeout_completed()
+ * instead.
+ *
+ * This function is kept primarily for backwards compatibility.
+ * All new code should call libusb_handle_events_completed() or
+ * libusb_handle_events_timeout_completed() to avoid race conditions.
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \returns 0 on success, or a LIBUSB_ERROR code on failure
+ */
+int API_EXPORTED libusb_handle_events(libusb_context *ctx)
+{
+ struct timeval tv;
+ tv.tv_sec = 60;
+ tv.tv_usec = 0;
+ return libusb_handle_events_timeout_completed(ctx, &tv, NULL);
+}
+
+/** \ingroup libusb_poll
+ * Handle any pending events in blocking mode.
+ *
+ * Like libusb_handle_events(), with the addition of a completed parameter
+ * to allow for race free waiting for the completion of a specific transfer.
+ *
+ * See libusb_handle_events_timeout_completed() for details on the completed
+ * parameter.
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \param completed pointer to completion integer to check, or NULL
+ * \returns 0 on success, or a LIBUSB_ERROR code on failure
+ * \ref libusb_mtasync
+ */
+int API_EXPORTED libusb_handle_events_completed(libusb_context *ctx,
+ int *completed)
+{
+ struct timeval tv;
+ tv.tv_sec = 60;
+ tv.tv_usec = 0;
+ return libusb_handle_events_timeout_completed(ctx, &tv, completed);
+}
+
+/** \ingroup libusb_poll
+ * Handle any pending events by polling file descriptors, without checking if
+ * any other threads are already doing so. Must be called with the event lock
+ * held, see libusb_lock_events().
+ *
+ * This function is designed to be called under the situation where you have
+ * taken the event lock and are calling poll()/select() directly on libusb's
+ * file descriptors (as opposed to using libusb_handle_events() or similar).
+ * You detect events on libusb's descriptors, so you then call this function
+ * with a zero timeout value (while still holding the event lock).
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \param tv the maximum time to block waiting for events, or zero for
+ * non-blocking mode
+ * \returns 0 on success
+ * \returns LIBUSB_ERROR_INVALID_PARAM if timeval is invalid
+ * \returns another LIBUSB_ERROR code on other failure
+ * \ref libusb_mtasync
+ */
+int API_EXPORTED libusb_handle_events_locked(libusb_context *ctx,
+ struct timeval *tv)
+{
+ int r;
+ struct timeval poll_timeout;
+
+ if (!TIMEVAL_IS_VALID(tv))
+ return LIBUSB_ERROR_INVALID_PARAM;
+
+ ctx = usbi_get_context(ctx);
+ r = get_next_timeout(ctx, tv, &poll_timeout);
+ if (r) {
+ /* timeout already expired */
+ handle_timeouts(ctx);
+ return 0;
+ }
+
+ return handle_events(ctx, &poll_timeout);
+}
+
+/** \ingroup libusb_poll
+ * Determines whether your application must apply special timing considerations
+ * when monitoring libusb's file descriptors.
+ *
+ * This function is only useful for applications which retrieve and poll
+ * libusb's file descriptors in their own main loop (\ref libusb_pollmain).
+ *
+ * Ordinarily, libusb's event handler needs to be called into at specific
+ * moments in time (in addition to times when there is activity on the file
+ * descriptor set). The usual approach is to use libusb_get_next_timeout()
+ * to learn about when the next timeout occurs, and to adjust your
+ * poll()/select() timeout accordingly so that you can make a call into the
+ * library at that time.
+ *
+ * Some platforms supported by libusb do not come with this baggage - any
+ * events relevant to timing will be represented by activity on the file
+ * descriptor set, and libusb_get_next_timeout() will always return 0.
+ * This function allows you to detect whether you are running on such a
+ * platform.
+ *
+ * Since v1.0.5.
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \returns 0 if you must call into libusb at times determined by
+ * libusb_get_next_timeout(), or 1 if all timeout events are handled internally
+ * or through regular activity on the file descriptors.
+ * \ref libusb_pollmain "Polling libusb file descriptors for event handling"
+ */
+int API_EXPORTED libusb_pollfds_handle_timeouts(libusb_context *ctx)
+{
+ ctx = usbi_get_context(ctx);
+ return usbi_using_timer(ctx);
+}
+
+/** \ingroup libusb_poll
+ * Determine the next internal timeout that libusb needs to handle. You only
+ * need to use this function if you are calling poll() or select() or similar
+ * on libusb's file descriptors yourself - you do not need to use it if you
+ * are calling libusb_handle_events() or a variant directly.
+ *
+ * You should call this function in your main loop in order to determine how
+ * long to wait for select() or poll() to return results. libusb needs to be
+ * called into at this timeout, so you should use it as an upper bound on
+ * your select() or poll() call.
+ *
+ * When the timeout has expired, call into libusb_handle_events_timeout()
+ * (perhaps in non-blocking mode) so that libusb can handle the timeout.
+ *
+ * This function may return 1 (success) and an all-zero timeval. If this is
+ * the case, it indicates that libusb has a timeout that has already expired
+ * so you should call libusb_handle_events_timeout() or similar immediately.
+ * A return code of 0 indicates that there are no pending timeouts.
+ *
+ * On some platforms, this function will always returns 0 (no pending
+ * timeouts). See \ref polltime.
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \param tv output location for a relative time against the current
+ * clock in which libusb must be called into in order to process timeout events
+ * \returns 0 if there are no pending timeouts, 1 if a timeout was returned,
+ * or LIBUSB_ERROR_OTHER on failure
+ */
+int API_EXPORTED libusb_get_next_timeout(libusb_context *ctx,
+ struct timeval *tv)
+{
+ struct usbi_transfer *itransfer;
+ struct timespec systime;
+ struct timespec next_timeout = { 0, 0 };
+
+ ctx = usbi_get_context(ctx);
+ if (usbi_using_timer(ctx))
+ return 0;
+
+ usbi_mutex_lock(&ctx->flying_transfers_lock);
+ if (list_empty(&ctx->flying_transfers)) {
+ usbi_mutex_unlock(&ctx->flying_transfers_lock);
+ usbi_dbg(ctx, "no URBs, no timeout!");
+ return 0;
+ }
+
+ /* find next transfer which hasn't already been processed as timed out */
+ for_each_transfer(ctx, itransfer) {
+ if (itransfer->timeout_flags & (USBI_TRANSFER_TIMEOUT_HANDLED | USBI_TRANSFER_OS_HANDLES_TIMEOUT))
+ continue;
+
+ /* if we've reached transfers of infinite timeout, we're done looking */
+ if (!TIMESPEC_IS_SET(&itransfer->timeout))
+ break;
+
+ next_timeout = itransfer->timeout;
+ break;
+ }
+ usbi_mutex_unlock(&ctx->flying_transfers_lock);
+
+ if (!TIMESPEC_IS_SET(&next_timeout)) {
+ usbi_dbg(ctx, "no URB with timeout or all handled by OS; no timeout!");
+ return 0;
+ }
+
+ usbi_get_monotonic_time(&systime);
+
+ if (!TIMESPEC_CMP(&systime, &next_timeout, <)) {
+ usbi_dbg(ctx, "first timeout already expired");
+ timerclear(tv);
+ } else {
+ TIMESPEC_SUB(&next_timeout, &systime, &next_timeout);
+ TIMESPEC_TO_TIMEVAL(tv, &next_timeout);
+ usbi_dbg(ctx, "next timeout in %ld.%06lds", (long)tv->tv_sec, (long)tv->tv_usec);
+ }
+
+ return 1;
+}
+
+/** \ingroup libusb_poll
+ * Register notification functions for file descriptor additions/removals.
+ * These functions will be invoked for every new or removed file descriptor
+ * that libusb uses as an event source.
+ *
+ * To remove notifiers, pass NULL values for the function pointers.
+ *
+ * Note that file descriptors may have been added even before you register
+ * these notifiers (e.g. at libusb_init() time).
+ *
+ * Additionally, note that the removal notifier may be called during
+ * libusb_exit() (e.g. when it is closing file descriptors that were opened
+ * and added to the poll set at libusb_init() time). If you don't want this,
+ * remove the notifiers immediately before calling libusb_exit().
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \param added_cb pointer to function for addition notifications
+ * \param removed_cb pointer to function for removal notifications
+ * \param user_data User data to be passed back to callbacks (useful for
+ * passing context information)
+ */
+void API_EXPORTED libusb_set_pollfd_notifiers(libusb_context *ctx,
+ libusb_pollfd_added_cb added_cb, libusb_pollfd_removed_cb removed_cb,
+ void *user_data)
+{
+#if !defined(PLATFORM_WINDOWS)
+ ctx = usbi_get_context(ctx);
+ ctx->fd_added_cb = added_cb;
+ ctx->fd_removed_cb = removed_cb;
+ ctx->fd_cb_user_data = user_data;
+#else
+ usbi_err(ctx, "external polling of libusb's internal event sources " \
+ "is not yet supported on Windows");
+ UNUSED(added_cb);
+ UNUSED(removed_cb);
+ UNUSED(user_data);
+#endif
+}
+
+/*
+ * Interrupt the iteration of the event handling thread, so that it picks
+ * up the event source change. Callers of this function must hold the event_data_lock.
+ */
+static void usbi_event_source_notification(struct libusb_context *ctx)
+{
+ unsigned int event_flags;
+
+ /* Record that there is a new poll fd.
+ * Only signal an event if there are no prior pending events. */
+ event_flags = ctx->event_flags;
+ ctx->event_flags |= USBI_EVENT_EVENT_SOURCES_MODIFIED;
+ if (!event_flags)
+ usbi_signal_event(&ctx->event);
+}
+
+/* Add an event source to the list of event sources to be monitored.
+ * poll_events should be specified as a bitmask of events passed to poll(), e.g.
+ * POLLIN and/or POLLOUT. */
+int usbi_add_event_source(struct libusb_context *ctx, usbi_os_handle_t os_handle, short poll_events)
+{
+ struct usbi_event_source *ievent_source = malloc(sizeof(*ievent_source));
+
+ if (!ievent_source)
+ return LIBUSB_ERROR_NO_MEM;
+
+ usbi_dbg(ctx, "add " USBI_OS_HANDLE_FORMAT_STRING " events %d", os_handle, poll_events);
+ ievent_source->data.os_handle = os_handle;
+ ievent_source->data.poll_events = poll_events;
+ usbi_mutex_lock(&ctx->event_data_lock);
+ list_add_tail(&ievent_source->list, &ctx->event_sources);
+ usbi_event_source_notification(ctx);
+ usbi_mutex_unlock(&ctx->event_data_lock);
+
+#if !defined(PLATFORM_WINDOWS)
+ if (ctx->fd_added_cb)
+ ctx->fd_added_cb(os_handle, poll_events, ctx->fd_cb_user_data);
+#endif
+
+ return 0;
+}
+
+/* Remove an event source from the list of event sources to be monitored. */
+void usbi_remove_event_source(struct libusb_context *ctx, usbi_os_handle_t os_handle)
+{
+ struct usbi_event_source *ievent_source;
+ int found = 0;
+
+ usbi_dbg(ctx, "remove " USBI_OS_HANDLE_FORMAT_STRING, os_handle);
+ usbi_mutex_lock(&ctx->event_data_lock);
+ for_each_event_source(ctx, ievent_source) {
+ if (ievent_source->data.os_handle == os_handle) {
+ found = 1;
+ break;
+ }
+ }
+
+ if (!found) {
+ usbi_dbg(ctx, "couldn't find " USBI_OS_HANDLE_FORMAT_STRING " to remove", os_handle);
+ usbi_mutex_unlock(&ctx->event_data_lock);
+ return;
+ }
+
+ list_del(&ievent_source->list);
+ list_add_tail(&ievent_source->list, &ctx->removed_event_sources);
+ usbi_event_source_notification(ctx);
+ usbi_mutex_unlock(&ctx->event_data_lock);
+
+#if !defined(PLATFORM_WINDOWS)
+ if (ctx->fd_removed_cb)
+ ctx->fd_removed_cb(os_handle, ctx->fd_cb_user_data);
+#endif
+}
+
+/** \ingroup libusb_poll
+ * Retrieve a list of file descriptors that should be polled by your main loop
+ * as libusb event sources.
+ *
+ * The returned list is NULL-terminated and should be freed with libusb_free_pollfds()
+ * when done. The actual list contents must not be touched.
+ *
+ * As file descriptors are a Unix-specific concept, this function is not
+ * available on Windows and will always return NULL.
+ *
+ * \param ctx the context to operate on, or NULL for the default context
+ * \returns a NULL-terminated list of libusb_pollfd structures
+ * \returns NULL on error
+ * \returns NULL on platforms where the functionality is not available
+ */
+DEFAULT_VISIBILITY
+const struct libusb_pollfd ** LIBUSB_CALL libusb_get_pollfds(
+ libusb_context *ctx)
+{
+#if !defined(PLATFORM_WINDOWS)
+ struct libusb_pollfd **ret = NULL;
+ struct usbi_event_source *ievent_source;
+ size_t i;
+
+ static_assert(sizeof(struct usbi_event_source_data) == sizeof(struct libusb_pollfd),
+ "mismatch between usbi_event_source_data and libusb_pollfd sizes");
+
+ ctx = usbi_get_context(ctx);
+
+ usbi_mutex_lock(&ctx->event_data_lock);
+
+ i = 0;
+ for_each_event_source(ctx, ievent_source)
+ i++;
+
+ ret = calloc(i + 1, sizeof(struct libusb_pollfd *));
+ if (!ret)
+ goto out;
+
+ i = 0;
+ for_each_event_source(ctx, ievent_source)
+ ret[i++] = (struct libusb_pollfd *)ievent_source;
+
+out:
+ usbi_mutex_unlock(&ctx->event_data_lock);
+ return (const struct libusb_pollfd **)ret;
+#else
+ usbi_err(ctx, "external polling of libusb's internal event sources " \
+ "is not yet supported on Windows");
+ return NULL;
+#endif
+}
+
+/** \ingroup libusb_poll
+ * Free a list of libusb_pollfd structures. This should be called for all
+ * pollfd lists allocated with libusb_get_pollfds().
+ *
+ * Since version 1.0.20, \ref LIBUSB_API_VERSION >= 0x01000104
+ *
+ * It is legal to call this function with a NULL pollfd list. In this case,
+ * the function will simply do nothing.
+ *
+ * \param pollfds the list of libusb_pollfd structures to free
+ */
+void API_EXPORTED libusb_free_pollfds(const struct libusb_pollfd **pollfds)
+{
+#if !defined(PLATFORM_WINDOWS)
+ free((void *)pollfds);
+#else
+ UNUSED(pollfds);
+#endif
+}
+
+/* Backends may call this from handle_events to report disconnection of a
+ * device. This function ensures transfers get cancelled appropriately.
+ * Callers of this function must hold the events_lock.
+ */
+void usbi_handle_disconnect(struct libusb_device_handle *dev_handle)
+{
+ struct libusb_context *ctx = HANDLE_CTX(dev_handle);
+ struct usbi_transfer *cur;
+ struct usbi_transfer *to_cancel;
+
+ usbi_dbg(ctx, "device %d.%d",
+ dev_handle->dev->bus_number, dev_handle->dev->device_address);
+
+ /* terminate all pending transfers with the LIBUSB_TRANSFER_NO_DEVICE
+ * status code.
+ *
+ * when we find a transfer for this device on the list, there are two
+ * possible scenarios:
+ * 1. the transfer is currently in-flight, in which case we terminate the
+ * transfer here
+ * 2. the transfer has been added to the flying transfer list by
+ * libusb_submit_transfer, has failed to submit and
+ * libusb_submit_transfer is waiting for us to release the
+ * flying_transfers_lock to remove it, so we ignore it
+ */
+
+ while (1) {
+ to_cancel = NULL;
+ usbi_mutex_lock(&ctx->flying_transfers_lock);
+ for_each_transfer(ctx, cur) {
+ if (USBI_TRANSFER_TO_LIBUSB_TRANSFER(cur)->dev_handle == dev_handle) {
+ usbi_mutex_lock(&cur->lock);
+ if (cur->state_flags & USBI_TRANSFER_IN_FLIGHT)
+ to_cancel = cur;
+ usbi_mutex_unlock(&cur->lock);
+
+ if (to_cancel)
+ break;
+ }
+ }
+ usbi_mutex_unlock(&ctx->flying_transfers_lock);
+
+ if (!to_cancel)
+ break;
+
+ usbi_dbg(ctx, "cancelling transfer %p from disconnect",
+ USBI_TRANSFER_TO_LIBUSB_TRANSFER(to_cancel));
+
+ usbi_mutex_lock(&to_cancel->lock);
+ usbi_backend.clear_transfer_priv(to_cancel);
+ usbi_mutex_unlock(&to_cancel->lock);
+ usbi_handle_transfer_completion(to_cancel, LIBUSB_TRANSFER_NO_DEVICE);
+ }
+}