/** * This file is part of the bladeRF project: * http://www.github.com/nuand/bladeRF * * Copyright (c) 2015 Nuand LLC * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #define _USE_MATH_DEFINES /* Required for MSVC */ #include #include #include "dc_calibration.h" #include "conversions.h" struct complexf { float i; float q; }; struct gain_mode { bladerf_lna_gain lna_gain; int rxvga1, rxvga2; }; /******************************************************************************* * Debug items ******************************************************************************/ /* Enable this to print diagnostic and debug information */ //#define ENABLE_DC_CALIBRATION_DEBUG //#define ENABLE_DC_CALIBRATION_VERBOSE #ifndef PR_DBG # ifdef ENABLE_DC_CALIBRATION_DEBUG # define PR_DBG(...) fprintf(stderr, " " __VA_ARGS__) # else # define PR_DBG(...) do {} while (0) # endif #endif #ifndef PR_VERBOSE # ifdef ENABLE_DC_CALIBRATION_VERBOSE # define PR_VERBOSE(...) fprintf(stderr, " " __VA_ARGS__) # else # define PR_VERBOSE(...) do {} while (0) # endif #endif /******************************************************************************* * Debug routines for saving samples ******************************************************************************/ //#define ENABLE_SAVE_SC16Q11 #ifdef ENABLE_SAVE_SC16Q11 static void save_sc16q11(const char *name, int16_t *samples, unsigned int count) { FILE *out = fopen(name, "wb"); if (!out) { return; } fwrite(samples, 2 * sizeof(samples[0]), count, out); fclose(out); } #else # define save_sc16q11(name, samples, count) do {} while (0) #endif //#define ENABLE_SAVE_COMPLEXF #ifdef ENABLE_SAVE_COMPLEXF static void save_complexf(const char *name, struct complexf *samples, unsigned int count) { unsigned int n; FILE *out = fopen(name, "wb"); if (!out) { return; } for (n = 0; n < count; n++) { fwrite(&samples[n].i, sizeof(samples[n].i), 1, out); fwrite(&samples[n].q, sizeof(samples[n].q), 1, out); } fclose(out); } #else # define save_complexf(name, samples, count) do {} while (0) #endif /******************************************************************************* * LMS6002D DC offset calibration ******************************************************************************/ /* We've found that running samples through the LMS6 tends to be required * for the TX LPF calibration to converge */ static inline int tx_lpf_dummy_tx(struct bladerf *dev) { int status; int retval = 0; struct bladerf_metadata meta; int16_t zero_sample[] = { 0, 0 }; bladerf_loopback loopback_backup; struct bladerf_rational_rate sample_rate_backup; memset(&meta, 0, sizeof(meta)); status = bladerf_get_loopback(dev, &loopback_backup); if (status != 0) { return status; } status = bladerf_get_rational_sample_rate(dev, BLADERF_MODULE_TX, &sample_rate_backup); if (status != 0) { return status; } status = bladerf_set_loopback(dev, BLADERF_LB_BB_TXVGA1_RXVGA2); if (status != 0) { goto out; } status = bladerf_set_sample_rate(dev, BLADERF_MODULE_TX, 3000000, NULL); if (status != 0) { goto out; } status = bladerf_sync_config(dev, BLADERF_MODULE_TX, BLADERF_FORMAT_SC16_Q11_META, 64, 16384, 16, 1000); if (status != 0) { goto out; } status = bladerf_enable_module(dev, BLADERF_MODULE_TX, true); if (status != 0) { goto out; } meta.flags = BLADERF_META_FLAG_TX_BURST_START | BLADERF_META_FLAG_TX_BURST_END | BLADERF_META_FLAG_TX_NOW; status = bladerf_sync_tx(dev, zero_sample, 1, &meta, 2000); if (status != 0) { goto out; } out: status = bladerf_enable_module(dev, BLADERF_MODULE_TX, false); if (status != 0 && retval == 0) { retval = status; } status = bladerf_set_rational_sample_rate(dev, BLADERF_MODULE_TX, &sample_rate_backup, NULL); if (status != 0 && retval == 0) { retval = status; } status = bladerf_set_loopback(dev, loopback_backup); if (status != 0 && retval == 0) { retval = status; } return retval; } static int cal_tx_lpf(struct bladerf *dev) { int status; status = tx_lpf_dummy_tx(dev); if (status == 0) { status = bladerf_calibrate_dc(dev, BLADERF_DC_CAL_TX_LPF); } return status; } int dc_calibration_lms6(struct bladerf *dev, const char *module_str) { int status; bladerf_cal_module module; if (!strcasecmp(module_str, "all")) { status = bladerf_calibrate_dc(dev, BLADERF_DC_CAL_LPF_TUNING); if (status != 0) { return status; } status = cal_tx_lpf(dev); if (status != 0) { return status; } status = bladerf_calibrate_dc(dev, BLADERF_DC_CAL_RX_LPF); if (status != 0) { return status; } status = bladerf_calibrate_dc(dev, BLADERF_DC_CAL_RXVGA2); } else { module = str_to_bladerf_cal_module(module_str); if (module == BLADERF_DC_CAL_INVALID) { return BLADERF_ERR_INVAL; } if (module == BLADERF_DC_CAL_TX_LPF) { status = cal_tx_lpf(dev); } else { status = bladerf_calibrate_dc(dev, module); } } return status; } /******************************************************************************* * Shared utility routines ******************************************************************************/ /* Round float to int16_t */ static inline int16_t float_to_int16(float val) { if ((val - 0.5) <= INT16_MIN) { return INT16_MIN; } if ((val + 0.5) >= INT16_MAX) { return INT16_MAX; } return val >= 0 ? (int16_t)(val + 0.5) : (int16_t)(val - 0.5); } /* Convert ms to samples */ #define MS_TO_SAMPLES(ms_, rate_) (\ (unsigned int) (ms_ * ((uint64_t) rate_) / 1000) \ ) /* RX samples, retrying if the machine is struggling to keep up. */ static int rx_samples(struct bladerf *dev, int16_t *samples, unsigned int count, uint64_t *ts, uint64_t ts_inc) { int status = 0; struct bladerf_metadata meta; int retry = 0; const int max_retries = 10; bool overrun = true; memset(&meta, 0, sizeof(meta)); meta.timestamp = *ts; while (status == 0 && overrun && retry < max_retries) { meta.timestamp = *ts; status = bladerf_sync_rx(dev, samples, count, &meta, 2000); if (status == BLADERF_ERR_TIME_PAST) { status = bladerf_get_timestamp(dev, BLADERF_MODULE_RX, ts); if (status != 0) { return status; } else { *ts += 20 * ts_inc; retry++; status = 0; } } else if (status == 0) { overrun = (meta.flags & BLADERF_META_STATUS_OVERRUN) != 0; if (overrun) { *ts += count + ts_inc; retry++; } } else { return status; } } if (retry >= max_retries) { status = BLADERF_ERR_IO; } else if (status == 0) { *ts += count + ts_inc; } return status; } /******************************************************************************* * RX DC offset calibration ******************************************************************************/ #define RX_CAL_RATE (3000000) #define RX_CAL_BW (1500000) #define RX_CAL_TS_INC (MS_TO_SAMPLES(15, RX_CAL_RATE)) #define RX_CAL_COUNT (MS_TO_SAMPLES(5, RX_CAL_RATE)) #define RX_CAL_MAX_SWEEP_LEN (2 * 2048 / 32) /* -2048 : 32 : 2048 */ struct rx_cal { struct bladerf *dev; int16_t *samples; unsigned int num_samples; int16_t *corr_sweep; uint64_t ts; uint64_t tx_freq; }; struct rx_cal_backup { struct bladerf_rational_rate rational_sample_rate; unsigned int bandwidth; uint64_t tx_freq; }; static int get_rx_cal_backup(struct bladerf *dev, struct rx_cal_backup *b) { int status; status = bladerf_get_rational_sample_rate(dev, BLADERF_MODULE_RX, &b->rational_sample_rate); if (status != 0) { return status; } status = bladerf_get_bandwidth(dev, BLADERF_MODULE_RX, &b->bandwidth); if (status != 0) { return status; } status = bladerf_get_frequency(dev, BLADERF_MODULE_TX, &b->tx_freq); if (status != 0) { return status; } return status; } static int set_rx_cal_backup(struct bladerf *dev, struct rx_cal_backup *b) { int status; int retval = 0; status = bladerf_set_rational_sample_rate(dev, BLADERF_MODULE_RX, &b->rational_sample_rate, NULL); if (status != 0 && retval == 0) { retval = status; } status = bladerf_set_bandwidth(dev, BLADERF_MODULE_RX, b->bandwidth, NULL); if (status != 0 && retval == 0) { retval = status; } status = bladerf_set_frequency(dev, BLADERF_MODULE_TX, b->tx_freq); if (status != 0 && retval == 0) { retval = status; } return retval; } /* Ensure TX >= 1 MHz away from the RX frequency to avoid any potential * artifacts from the PLLs interfering with one another */ static int rx_cal_update_frequency(struct rx_cal *cal, uint64_t rx_freq) { int status = 0; uint64_t f_diff; if (rx_freq < cal->tx_freq) { f_diff = cal->tx_freq - rx_freq; } else { f_diff = rx_freq - cal->tx_freq; } PR_DBG("Set F_RX = %u\n", rx_freq); PR_DBG("F_diff(RX, TX) = %u\n", f_diff); if (f_diff < 1000000) { if (rx_freq >= (BLADERF_FREQUENCY_MIN + 1000000)) { cal->tx_freq = rx_freq - 1000000; } else { cal->tx_freq = rx_freq + 1000000; } status = bladerf_set_frequency(cal->dev, BLADERF_MODULE_TX, cal->tx_freq); if (status != 0) { return status; } PR_DBG("Adjusted TX frequency: %u\n", cal->tx_freq); } status = bladerf_set_frequency(cal->dev, BLADERF_MODULE_RX, rx_freq); if (status != 0) { return status; } cal->ts += RX_CAL_TS_INC; return status; } static inline void sample_mean(int16_t *samples, size_t count, float *mean_i, float *mean_q) { int64_t accum_i = 0; int64_t accum_q = 0; size_t n; if (count == 0) { assert(!"Invalid count (0) provided to sample_mean()"); *mean_i = 0; *mean_q = 0; return; } for (n = 0; n < (2 * count); n += 2) { accum_i += samples[n]; accum_q += samples[n + 1]; } *mean_i = ((float) accum_i) / count; *mean_q = ((float) accum_q) / count; } static inline int set_rx_dc_corr(struct bladerf *dev, int16_t i, int16_t q) { int status; status = bladerf_set_correction(dev, BLADERF_MODULE_RX, BLADERF_CORR_LMS_DCOFF_I, i); if (status != 0) { return status; } status = bladerf_set_correction(dev, BLADERF_MODULE_RX, BLADERF_CORR_LMS_DCOFF_Q, q); return status; } /* Get the mean for one of the coarse estimate points. If it seems that this * value might be (or close) causing us to clamp, adjust it and retry */ static int rx_cal_coarse_means(struct rx_cal *cal, int16_t *corr_value, float *mean_i, float *mean_q) { int status; const int16_t mean_limit_high = 2000; const int16_t mean_limit_low = -mean_limit_high; const int16_t corr_limit = 128; bool retry = false; do { status = set_rx_dc_corr(cal->dev, *corr_value, *corr_value); if (status != 0) { return status; } status = rx_samples(cal->dev, cal->samples, cal->num_samples, &cal->ts, RX_CAL_TS_INC); if (status != 0) { return status; } sample_mean(cal->samples, cal->num_samples, mean_i, mean_q); if (*mean_i > mean_limit_high || *mean_q > mean_limit_high || *mean_i < mean_limit_low || *mean_q < mean_limit_low ) { if (*corr_value < 0) { retry = (*corr_value <= -corr_limit); } else { retry = (*corr_value >= corr_limit); } if (retry) { PR_DBG("Coarse estimate point Corr=%4d yields extreme means: " "(%4f, %4f). Retrying...\n", *corr_value, *mean_i, *mean_q); *corr_value = *corr_value / 2; } } else { retry = false; } } while (retry); if (retry) { PR_DBG("Non-ideal values are being used.\n"); } return 0; } /* Estimate the DC correction values that yield zero DC offset via a linear * approximation */ static int rx_cal_coarse_estimate(struct rx_cal *cal, int16_t *i_est, int16_t *q_est) { int status; int16_t x1 = -2048; int16_t x2 = 2048; float y1i, y1q, y2i, y2q; float mi, mq; float bi, bq; float i_guess, q_guess; status = rx_cal_coarse_means(cal, &x1, &y1i, &y1q); if (status != 0) { *i_est = 0; *q_est = 0; return status; } PR_VERBOSE("Means for x1=%d: y1i=%f, y1q=%f\n", x1, y1i, y1q); status = rx_cal_coarse_means(cal, &x2, &y2i, &y2q); if (status != 0) { *i_est = 0; *q_est = 0; return status; } PR_VERBOSE("Means for x2: y2i=%f, y2q=%f\n", y2i, y2q); mi = (y2i - y1i) / (x2 - x1); mq = (y2q - y1q) / (x2 - x1); bi = y1i - mi * x1; bq = y1q - mq * x1; PR_VERBOSE("mi=%f, bi=%f, mq=%f, bq=%f\n", mi, bi, mq, bq); i_guess = -bi/mi + 0.5f; if (i_guess < -2048) { i_guess = -2048; } else if (i_guess > 2048) { i_guess = 2048; } q_guess = -bq/mq + 0.5f; if (q_guess < -2048) { q_guess = -2048; } else if (q_guess > 2048) { q_guess = 2048; } *i_est = (int16_t) i_guess; *q_est = (int16_t) q_guess; PR_DBG("Coarse estimate: I=%d, Q=%d\n", *i_est, *q_est); return 0; } static void init_rx_cal_sweep(int16_t *corr, unsigned int *sweep_len, int16_t i_est, int16_t q_est) { unsigned int actual_len = 0; unsigned int i; int16_t sweep_min, sweep_max, sweep_val; /* LMS6002D RX DC calibrations have a limited range. libbladeRF throws away * the lower 5 bits. */ const int16_t sweep_inc = 32; const int16_t min_est = (i_est < q_est) ? i_est : q_est; const int16_t max_est = (i_est > q_est) ? i_est : q_est; sweep_min = min_est - 12 * 32; if (sweep_min < -2048) { sweep_min = -2048; } sweep_max = max_est + 12 * 32; if (sweep_max > 2048) { sweep_max = 2048; } /* Given that these lower bits are thrown away, it can be confusing to * see that values change in their LSBs that don't matter. Therefore, * we'll adjust to muliples of sweep_inc */ sweep_min = (sweep_min / 32) * 32; sweep_max = (sweep_max / 32) * 32; PR_DBG("Sweeping [%d : %d : %d]\n", sweep_min, sweep_inc, sweep_max); sweep_val = sweep_min; for (i = 0; sweep_val < sweep_max && i < RX_CAL_MAX_SWEEP_LEN; i++) { corr[i] = sweep_val; sweep_val += sweep_inc; actual_len++; } *sweep_len = actual_len; } static int save_gains(struct rx_cal *cal, struct gain_mode *gain) { int status; status = bladerf_get_lna_gain(cal->dev, &gain->lna_gain); if (status != 0) { return status; } status = bladerf_get_rxvga1(cal->dev, &gain->rxvga1); if (status != 0) { return status; } status = bladerf_get_rxvga2(cal->dev, &gain->rxvga2); if (status != 0) { return status; } return status; } static int load_gains(struct rx_cal *cal, struct gain_mode *gain) { int status; status = bladerf_set_lna_gain(cal->dev, gain->lna_gain); if (status != 0) { return status; } status = bladerf_set_rxvga1(cal->dev, gain->rxvga1); if (status != 0) { return status; } status = bladerf_set_rxvga2(cal->dev, gain->rxvga2); if (status != 0) { return status; } return status; } static int rx_cal_dc_off(struct rx_cal *cal, struct gain_mode *gains, int16_t *dc_i, int16_t *dc_q) { int status = BLADERF_ERR_UNEXPECTED; float mean_i, mean_q; status = load_gains(cal, gains); if (status != 0) { return status; } status = rx_samples(cal->dev, cal->samples, cal->num_samples, &cal->ts, RX_CAL_TS_INC); if (status != 0) { return status; } sample_mean(cal->samples, cal->num_samples, &mean_i, &mean_q); *dc_i = float_to_int16(mean_i); *dc_q = float_to_int16(mean_q); return 0; } static int rx_cal_sweep(struct rx_cal *cal, int16_t *corr, unsigned int sweep_len, int16_t *result_i, int16_t *result_q, float *error_i, float *error_q) { int status = BLADERF_ERR_UNEXPECTED; unsigned int n; int16_t min_corr_i = 0; int16_t min_corr_q = 0; float mean_i, mean_q; float min_val_i, min_val_q; min_val_i = min_val_q = 2048; for (n = 0; n < sweep_len; n++) { status = set_rx_dc_corr(cal->dev, corr[n], corr[n]); if (status != 0) { return status; } status = rx_samples(cal->dev, cal->samples, cal->num_samples, &cal->ts, RX_CAL_TS_INC); if (status != 0) { return status; } sample_mean(cal->samples, cal->num_samples, &mean_i, &mean_q); PR_VERBOSE(" Corr=%4d, Mean_I=%4.2f, Mean_Q=%4.2f\n", corr[n], mean_i, mean_q); /* Not using fabs() to avoid adding a -lm dependency */ if (mean_i < 0) { mean_i = -mean_i; } if (mean_q < 0) { mean_q = -mean_q; } if (mean_i < min_val_i) { min_val_i = mean_i; min_corr_i = corr[n]; } if (mean_q < min_val_q) { min_val_q = mean_q; min_corr_q = corr[n]; } } *result_i = min_corr_i; *result_q = min_corr_q; *error_i = min_val_i; *error_q = min_val_q; return 0; } static int perform_rx_cal(struct rx_cal *cal, struct dc_calibration_params *p) { int status; int16_t i_est, q_est; unsigned int sweep_len = RX_CAL_MAX_SWEEP_LEN; struct gain_mode saved_gains; struct gain_mode agc_gains[] = { { .lna_gain = BLADERF_LNA_GAIN_MAX, .rxvga1 = 30, .rxvga2 = 15 }, /* AGC Max Gain */ { .lna_gain = BLADERF_LNA_GAIN_MID, .rxvga1 = 30, .rxvga2 = 0 }, /* AGC Mid Gain */ { .lna_gain = BLADERF_LNA_GAIN_MID, .rxvga1 = 12, .rxvga2 = 0 } /* AGC Min Gain */ }; status = rx_cal_update_frequency(cal, p->frequency); if (status != 0) { return status; } /* Get an initial guess at our correction values */ status = rx_cal_coarse_estimate(cal, &i_est, &q_est); if (status != 0) { return status; } /* Perform a finer sweep of correction values */ init_rx_cal_sweep(cal->corr_sweep, &sweep_len, i_est, q_est); /* Advance our timestmap just to account for any time we may have lost */ cal->ts += RX_CAL_TS_INC; status = rx_cal_sweep(cal, cal->corr_sweep, sweep_len, &p->corr_i, &p->corr_q, &p->error_i, &p->error_q); if (status != 0) { return status; } /* Apply the nominal correction values */ status = set_rx_dc_corr(cal->dev, p->corr_i, p->corr_q); if (status != 0) { return status; } bladerf_fpga_size fpga_size; status = bladerf_get_fpga_size(cal->dev, &fpga_size); if (status != 0) { return status; } if (fpga_size != BLADERF_FPGA_40KLE && fpga_size != BLADERF_FPGA_115KLE) { return 0; } /* Measure DC correction for AGC */ status = save_gains(cal, &saved_gains); if (status != 0) { return status; } status = rx_cal_dc_off(cal, &agc_gains[2], &p->min_dc_i, &p->min_dc_q); if (status != 0) { return status; } status = rx_cal_dc_off(cal, &agc_gains[1], &p->mid_dc_i, &p->mid_dc_q); if (status != 0) { return status; } status = rx_cal_dc_off(cal, &agc_gains[0], &p->max_dc_i, &p->max_dc_q); if (status != 0) { return status; } status = load_gains(cal, &saved_gains); return status; } static int rx_cal_init_state(struct bladerf *dev, const struct rx_cal_backup *backup, struct rx_cal *state) { int status; state->dev = dev; state->num_samples = RX_CAL_COUNT; state->samples = malloc(2 * sizeof(state->samples[0]) * RX_CAL_COUNT); if (state->samples == NULL) { return BLADERF_ERR_MEM; } state->corr_sweep = malloc(sizeof(state->corr_sweep[0]) * RX_CAL_MAX_SWEEP_LEN); if (state->corr_sweep == NULL) { return BLADERF_ERR_MEM; } state->tx_freq = backup->tx_freq; status = bladerf_get_timestamp(dev, BLADERF_MODULE_RX, &state->ts); if (status != 0) { return status; } /* Schedule first RX well into the future */ state->ts += 20 * RX_CAL_TS_INC; return status; } static int rx_cal_init(struct bladerf *dev) { int status; status = bladerf_set_sample_rate(dev, BLADERF_MODULE_RX, RX_CAL_RATE, NULL); if (status != 0) { return status; } status = bladerf_set_bandwidth(dev, BLADERF_MODULE_RX, RX_CAL_BW, NULL); if (status != 0) { return status; } status = bladerf_sync_config(dev, BLADERF_MODULE_RX, BLADERF_FORMAT_SC16_Q11_META, 64, 16384, 16, 1000); if (status != 0) { return status; } status = bladerf_enable_module(dev, BLADERF_MODULE_RX, true); if (status != 0) { return status; } return status; } int dc_calibration_rx(struct bladerf *dev, struct dc_calibration_params *params, size_t params_count, bool print_status) { int status = 0; int retval = 0; struct rx_cal state; struct rx_cal_backup backup; size_t i; memset(&state, 0, sizeof(state)); status = get_rx_cal_backup(dev, &backup); if (status != 0) { return status; } status = rx_cal_init(dev); if (status != 0) { goto out; } status = rx_cal_init_state(dev, &backup, &state); if (status != 0) { goto out; } for (i = 0; i < params_count && status == 0; i++) { status = perform_rx_cal(&state, ¶ms[i]); if (status == 0 && print_status) { # ifdef DEBUG_DC_CALIBRATION const char sol = '\n'; const char eol = '\n'; # else const char sol = '\r'; const char eol = '\0'; # endif printf("%cCalibrated @ %10" PRIu64 " Hz: I=%4d (Error: %4.2f), " "Q=%4d (Error: %4.2f) ", sol, params[i].frequency, params[i].corr_i, params[i].error_i, params[i].corr_q, params[i].error_q); printf("DC-LUT: Max (I=%3d, Q=%3d) Mid (I=%3d, Q=%3d)" " Min (I=%3d, Q=%3d)%c", params[i].max_dc_i, params[i].max_dc_q, params[i].mid_dc_i, params[i].mid_dc_q, params[i].min_dc_i, params[i].min_dc_q, eol); fflush(stdout); } } if (print_status) { putchar('\n'); } out: free(state.samples); free(state.corr_sweep); retval = status; status = bladerf_enable_module(dev, BLADERF_MODULE_RX, false); if (status != 0 && retval == 0) { retval = status; } status = set_rx_cal_backup(dev, &backup); if (status != 0 && retval == 0) { retval = status; } return retval; } /******************************************************************************* * TX DC offset calibration ******************************************************************************/ #define TX_CAL_RATE (4000000) #define TX_CAL_RX_BW (3000000) #define TX_CAL_RX_LNA (BLADERF_LNA_GAIN_MAX) #define TX_CAL_RX_VGA1 (25) #define TX_CAL_RX_VGA2 (0) #define TX_CAL_TX_BW (1500000) #define TX_CAL_TS_INC (MS_TO_SAMPLES(15, TX_CAL_RATE)) #define TX_CAL_COUNT (MS_TO_SAMPLES(5, TX_CAL_RATE)) #define TX_CAL_CORR_SWEEP_LEN (4096 / 16) /* -2048:16:2048 */ #define TX_CAL_DEFAULT_LB (BLADERF_LB_RF_LNA1) struct tx_cal_backup { uint64_t rx_freq; struct bladerf_rational_rate rx_sample_rate; unsigned int rx_bandwidth; bladerf_lna_gain rx_lna; int rx_vga1; int rx_vga2; struct bladerf_rational_rate tx_sample_rate; unsigned int tx_bandwidth; bladerf_loopback loopback; }; struct tx_cal { struct bladerf *dev; int16_t *samples; /* Raw samples */ unsigned int num_samples; /* Number of raw samples */ struct complexf *filt; /* Filter state */ struct complexf *filt_out; /* Filter output */ struct complexf *post_mix; /* Post-filter, mixed to baseband */ int16_t *sweep; /* Correction sweep */ float *mag; /* Magnitude results from sweep */ uint64_t ts; /* Timestamp */ bladerf_loopback loopback; /* Current loopback mode */ bool rx_low; /* RX tuned lower than TX */ }; /* Filter used to isolate contribution of TX LO leakage in received * signal. 15th order Equiripple FIR with Fs=4e6, Fpass=1, Fstop=1e6 */ static const float tx_cal_filt[] = { 0.000327949366768f, 0.002460188536582f, 0.009842382390924f, 0.027274728394777f, 0.057835200476419f, 0.098632713294830f, 0.139062540460741f, 0.164562494987592f, 0.164562494987592f, 0.139062540460741f, 0.098632713294830f, 0.057835200476419f, 0.027274728394777f, 0.009842382390924f, 0.002460188536582f, 0.000327949366768f, }; static const unsigned int tx_cal_filt_num_taps = (sizeof(tx_cal_filt) / sizeof(tx_cal_filt[0])); static inline int set_tx_dc_corr(struct bladerf *dev, int16_t i, int16_t q) { int status; status = bladerf_set_correction(dev, BLADERF_MODULE_TX, BLADERF_CORR_LMS_DCOFF_I, i); if (status != 0) { return status; } status = bladerf_set_correction(dev, BLADERF_MODULE_TX, BLADERF_CORR_LMS_DCOFF_Q, q); return status; } static int get_tx_cal_backup(struct bladerf *dev, struct tx_cal_backup *b) { int status; status = bladerf_get_frequency(dev, BLADERF_MODULE_RX, &b->rx_freq); if (status != 0) { return status; } status = bladerf_get_rational_sample_rate(dev, BLADERF_MODULE_RX, &b->rx_sample_rate); if (status != 0) { return status; } status = bladerf_get_bandwidth(dev, BLADERF_MODULE_RX, &b->rx_bandwidth); if (status != 0) { return status; } status = bladerf_get_lna_gain(dev, &b->rx_lna); if (status != 0) { return status; } status = bladerf_get_rxvga1(dev, &b->rx_vga1); if (status != 0) { return status; } status = bladerf_get_rxvga2(dev, &b->rx_vga2); if (status != 0) { return status; } status = bladerf_get_rational_sample_rate(dev, BLADERF_MODULE_TX, &b->tx_sample_rate); if (status != 0) { return status; } status = bladerf_get_loopback(dev, &b->loopback); return status; } static int set_tx_cal_backup(struct bladerf *dev, struct tx_cal_backup *b) { int status; int retval = 0; status = bladerf_set_loopback(dev, b->loopback); if (status != 0 && retval == 0) { retval = status; } status = bladerf_set_frequency(dev, BLADERF_MODULE_RX, b->rx_freq); if (status != 0 && retval == 0) { retval = status; } status = bladerf_set_rational_sample_rate(dev, BLADERF_MODULE_RX, &b->rx_sample_rate, NULL); if (status != 0 && retval == 0) { retval = status; } status = bladerf_set_bandwidth(dev, BLADERF_MODULE_RX, b->rx_bandwidth, NULL); if (status != 0 && retval == 0) { retval = status; } status = bladerf_set_lna_gain(dev, b->rx_lna); if (status != 0 && retval == 0) { retval = status; } status = bladerf_set_rxvga1(dev, b->rx_vga1); if (status != 0 && retval == 0) { retval = status; } status = bladerf_set_rxvga2(dev, b->rx_vga2); if (status != 0 && retval == 0) { retval = status; } status = bladerf_set_rational_sample_rate(dev, BLADERF_MODULE_TX, &b->tx_sample_rate, NULL); if (status != 0 && retval == 0) { retval = status; } return retval; } static int tx_cal_update_frequency(struct tx_cal *state, uint64_t freq) { int status; bladerf_loopback lb; uint64_t rx_freq; status = bladerf_set_frequency(state->dev, BLADERF_MODULE_TX, freq); if (status != 0) { return status; } rx_freq = freq - 1000000; if (rx_freq < BLADERF_FREQUENCY_MIN) { rx_freq = freq + 1000000; state->rx_low = false; } else { state->rx_low = true; } status = bladerf_set_frequency(state->dev, BLADERF_MODULE_RX, rx_freq); if (status != 0) { return status; } if (freq < 1500000000) { lb = BLADERF_LB_RF_LNA1; PR_DBG("Switching to RF LNA1 loopback.\n"); } else { lb = BLADERF_LB_RF_LNA2; PR_DBG("Switching to RF LNA2 loopback.\n"); } if (state->loopback != lb) { status = bladerf_set_loopback(state->dev, lb); if (status == 0) { state->loopback = lb; } } return status; } static int apply_tx_cal_settings(struct bladerf *dev) { int status; status = bladerf_set_sample_rate(dev, BLADERF_MODULE_RX, TX_CAL_RATE, NULL); if (status != 0) { return status; } status = bladerf_set_bandwidth(dev, BLADERF_MODULE_RX, TX_CAL_RX_BW, NULL); if (status != 0) { return status; } status = bladerf_set_lna_gain(dev, TX_CAL_RX_LNA); if (status != 0) { return status; } status = bladerf_set_rxvga1(dev, TX_CAL_RX_VGA1); if (status != 0) { return status; } status = bladerf_set_rxvga2(dev, TX_CAL_RX_VGA2); if (status != 0) { return status; } status = bladerf_set_sample_rate(dev, BLADERF_MODULE_TX, TX_CAL_RATE, NULL); if (status != 0) { return status; } status = bladerf_set_loopback(dev, TX_CAL_DEFAULT_LB); if (status != 0) { return status; } return status; } /* We just need to flush some zeros through the system to hole the DAC at * 0+0j and remain there while letting it underrun. This alleviates the * need to worry about continuously TX'ing zeros. */ static int tx_cal_tx_init(struct bladerf *dev) { int status; int16_t zero_sample[] = { 0, 0 }; struct bladerf_metadata meta; memset(&meta, 0, sizeof(meta)); status = bladerf_sync_config(dev, BLADERF_MODULE_TX, BLADERF_FORMAT_SC16_Q11_META, 4, 16384, 2, 1000); if (status != 0) { return status; } status = bladerf_enable_module(dev, BLADERF_MODULE_TX, true); if (status != 0) { return status; } meta.flags = BLADERF_META_FLAG_TX_BURST_START | BLADERF_META_FLAG_TX_BURST_END | BLADERF_META_FLAG_TX_NOW; status = bladerf_sync_tx(dev, &zero_sample, 1, &meta, 2000); return status; } static int tx_cal_rx_init(struct bladerf *dev) { int status; status = bladerf_sync_config(dev, BLADERF_MODULE_RX, BLADERF_FORMAT_SC16_Q11_META, 64, 16384, 32, 1000); if (status != 0) { return status; } status = bladerf_enable_module(dev, BLADERF_MODULE_RX, true); return status; } static void tx_cal_state_deinit(struct tx_cal *cal) { free(cal->sweep); free(cal->mag); free(cal->samples); free(cal->filt); free(cal->filt_out); free(cal->post_mix); } /* This should be called immediately preceding the cal routines */ static int tx_cal_state_init(struct bladerf *dev, struct tx_cal *cal) { int status; cal->dev = dev; cal->num_samples = TX_CAL_COUNT; cal->loopback = TX_CAL_DEFAULT_LB; /* Interleaved SC16 Q11 samples */ cal->samples = malloc(2 * sizeof(cal->samples[0]) * cal->num_samples); if (cal->samples == NULL) { return BLADERF_ERR_MEM; } /* Filter state */ cal->filt = malloc(2 * sizeof(cal->filt[0]) * tx_cal_filt_num_taps); if (cal->filt == NULL) { return BLADERF_ERR_MEM; } /* Filter output */ cal->filt_out = malloc(sizeof(cal->filt_out[0]) * cal->num_samples); if (cal->filt_out == NULL) { return BLADERF_ERR_MEM; } /* Post-mix */ cal->post_mix = malloc(sizeof(cal->post_mix[0]) * cal->num_samples); if (cal->post_mix == NULL) { return BLADERF_ERR_MEM; } /* Correction sweep and results */ cal->sweep = malloc(sizeof(cal->sweep[0]) * TX_CAL_CORR_SWEEP_LEN); if (cal->sweep == NULL) { return BLADERF_ERR_MEM; } cal->mag = malloc(sizeof(cal->mag[0]) * TX_CAL_CORR_SWEEP_LEN); if (cal->mag == NULL) { return BLADERF_ERR_MEM; } /* Set initial RX in the future */ status = bladerf_get_timestamp(cal->dev, BLADERF_MODULE_RX, &cal->ts); if (status == 0) { cal->ts += 20 * TX_CAL_TS_INC; } return status; } /* Filter samples * Input: state->post_mix * Output: state->filt_out */ static void tx_cal_filter(struct tx_cal *state) { unsigned int n, m; struct complexf *ins1, *ins2; struct complexf *curr; /* Current filter state */ const struct complexf *filt_end = &state->filt[2 * tx_cal_filt_num_taps]; /* Reset filter state */ ins1 = &state->filt[0]; ins2 = &state->filt[tx_cal_filt_num_taps]; memset(state->filt, 0, 2 * sizeof(state->filt[0]) * tx_cal_filt_num_taps); for (n = 0; n < state->num_samples; n++) { /* Insert sample */ *ins1 = *ins2 = state->post_mix[n]; /* Convolve */ state->filt_out[n].i = 0; state->filt_out[n].q = 0; curr = ins2; for (m = 0; m < tx_cal_filt_num_taps; m++, curr--) { state->filt_out[n].i += tx_cal_filt[m] * curr->i; state->filt_out[n].q += tx_cal_filt[m] * curr->q; } /* Update insertion points */ ins2++; if (ins2 == filt_end) { ins1 = &state->filt[0]; ins2 = &state->filt[tx_cal_filt_num_taps]; } else { ins1++; } } } /* Deinterleave, scale, and mix with an -Fs/4 tone to shift TX DC offset out at * Fs/4 to baseband. * Input: state->samples * Output: state->post_mix */ static void tx_cal_mix(struct tx_cal *state) { unsigned int n, m; int mix_state; float scaled_i, scaled_q; /* Mix with -Fs/4 if RX is tuned "lower" than TX, and Fs/4 otherwise */ const int mix_state_inc = state->rx_low ? 1 : -1; mix_state = 0; for (n = 0, m = 0; n < (2 * state->num_samples); n += 2, m++) { scaled_i = state->samples[n] / 2048.0f; scaled_q = state->samples[n+1] / 2048.0f; switch (mix_state) { case 0: state->post_mix[m].i = scaled_i; state->post_mix[m].q = scaled_q; break; case 1: state->post_mix[m].i = scaled_q; state->post_mix[m].q = -scaled_i; break; case 2: state->post_mix[m].i = -scaled_i; state->post_mix[m].q = -scaled_q; break; case 3: state->post_mix[m].i = -scaled_q; state->post_mix[m].q = scaled_i; break; } mix_state = (mix_state + mix_state_inc) & 0x3; } } static int tx_cal_avg_magnitude(struct tx_cal *state, float *avg_mag) { int status; const unsigned int start = (tx_cal_filt_num_taps + 1) / 2; unsigned int n; float accum; /* Fetch samples at the current settings */ status = rx_samples(state->dev, state->samples, state->num_samples, &state->ts, TX_CAL_TS_INC); if (status != 0) { return status; } /* Deinterleave & mix TX's DC offset contribution to baseband */ tx_cal_mix(state); /* Filter out everything other than the TX DC offset's contribution */ tx_cal_filter(state); /* Compute the power (magnitude^2 to alleviate need for square root). * We skip samples here to account for the group delay of the filter; * the initial samples will be ramping up. */ accum = 0; for (n = start; n < state->num_samples; n++) { const struct complexf *s = &state->filt_out[n]; const float m = (float) sqrt(s->i * s->i + s->q * s->q); accum += m; } *avg_mag = (accum / (state->num_samples - start)); /* Scale this back up to DAC/ADC counts, just for convenience */ *avg_mag *= 2048.0; return status; } /* Apply the correction value and read the TX DC offset magnitude */ static int tx_cal_measure_correction(struct tx_cal *state, bladerf_correction c, int16_t value, float *mag) { int status; status = bladerf_set_correction(state->dev, BLADERF_MODULE_TX, c, value); if (status != 0) { return status; } state->ts += TX_CAL_TS_INC; status = tx_cal_avg_magnitude(state, mag); if (status == 0) { PR_VERBOSE(" Corr=%5d, Avg_magnitude=%f\n", value, *mag); } return status; } static int tx_cal_get_corr(struct tx_cal *state, bool i_ch, int16_t *corr_value, float *error_value) { int status; unsigned int n; int16_t corr; float mag[4]; float m1, m2, b1, b2; int16_t range_min, range_max; int16_t min_corr; float min_mag; const int16_t x[4] = { -1800, -1000, 1000, 1800 }; const bladerf_correction corr_module = i_ch ? BLADERF_CORR_LMS_DCOFF_I : BLADERF_CORR_LMS_DCOFF_Q; PR_DBG("Getting coarse estimate for %c\n", i_ch ? 'I' : 'Q'); for (n = 0; n < 4; n++) { status = tx_cal_measure_correction(state, corr_module, x[n], &mag[n]); if (status != 0) { return status; } } m1 = (mag[1] - mag[0]) / (x[1] - x[0]); b1 = mag[0] - m1 * x[0]; m2 = (mag[3] - mag[2]) / (x[3] - x[2]); b2 = mag[2] - m2 * x[2]; PR_VERBOSE(" m1=%3.8f, b1=%3.8f, m2=%3.8f, b=%3.8f\n", m1, b1, m2, b2); if (m1 < 0 && m2 > 0) { const int16_t tmp = (int16_t)((b2 - b1) / (m1 - m2) + 0.5); const int16_t corr_est = (tmp / 16) * 16; /* Number of points to sweep on either side of our estimate */ const unsigned int n_sweep = 10; PR_VERBOSE(" corr_est=%d\n", corr_est); range_min = corr_est - 16 * n_sweep; if (range_min < -2048) { range_min = -2048; } range_max = corr_est + 16 * n_sweep; if (range_max > 2048) { range_max = 2048; } } else { /* The frequency and gain combination have yielded a set of * points that do not form intersecting lines. This may be indicative * of a case where the LMS6 DC bias settings can't pull the DC offset * to a zero-crossing. We'll just do a slow, full scan to find * a minimum */ PR_VERBOSE(" Could not compute estimate. Performing full sweep.\n"); range_min = -2048; range_max = 2048; } PR_DBG("Performing correction value sweep: [%-5d : 16 :%5d]\n", range_min, range_max); min_corr = 0; min_mag = 2048; for (n = 0, corr = range_min; corr <= range_max && n < TX_CAL_CORR_SWEEP_LEN; n++, corr += 16) { float tmp; status = tx_cal_measure_correction(state, corr_module, corr, &tmp); if (status != 0) { return status; } if (tmp < 0) { tmp = -tmp; } if (tmp < min_mag) { min_corr = corr; min_mag = tmp; } } /* Leave the device set to the minimum */ status = bladerf_set_correction(state->dev, BLADERF_MODULE_TX, corr_module, min_corr); if (status == 0) { *corr_value = min_corr; *error_value = min_mag; } return status; } static int perform_tx_cal(struct tx_cal *state, struct dc_calibration_params *p) { int status = 0; status = tx_cal_update_frequency(state, p->frequency); if (status != 0) { return status; } state->ts += TX_CAL_TS_INC; /* Perform I calibration */ status = tx_cal_get_corr(state, true, &p->corr_i, &p->error_i); if (status != 0) { return status; } /* Perform Q calibration */ status = tx_cal_get_corr(state, false, &p->corr_q, &p->error_q); if (status != 0) { return status; } /* Re-do I calibration to try to further fine-tune result */ status = tx_cal_get_corr(state, true, &p->corr_i, &p->error_i); if (status != 0) { return status; } /* Apply the resulting nominal values */ status = set_tx_dc_corr(state->dev, p->corr_i, p->corr_q); return status; } int dc_calibration_tx(struct bladerf *dev, struct dc_calibration_params *params, size_t num_params, bool print_status) { int status = 0; int retval = 0; struct tx_cal_backup backup; struct tx_cal state; size_t i; memset(&state, 0, sizeof(state)); /* Backup the device state prior to making changes */ status = get_tx_cal_backup(dev, &backup); if (status != 0) { return status; } /* Configure the device for our TX cal operation */ status = apply_tx_cal_settings(dev); if (status != 0) { goto out; } /* Enable TX and run zero samples through the device */ status = tx_cal_tx_init(dev); if (status != 0) { goto out; } /* Enable RX */ status = tx_cal_rx_init(dev); if (status != 0) { goto out; } /* Initialize calibration state information and resources */ status = tx_cal_state_init(dev, &state); if (status != 0) { goto out; } for (i = 0; i < num_params && status == 0; i++) { status = perform_tx_cal(&state, ¶ms[i]); if (status == 0 && print_status) { # ifdef DEBUG_DC_CALIBRATION const char sol = '\n'; const char eol = '\n'; # else const char sol = '\r'; const char eol = '\0'; # endif printf("%cCalibrated @ %10" PRIu64 " Hz: " "I=%4d (Error: %4.2f), " "Q=%4d (Error: %4.2f) %c", sol, params[i].frequency, params[i].corr_i, params[i].error_i, params[i].corr_q, params[i].error_q, eol); fflush(stdout); } } if (print_status) { putchar('\n'); } out: retval = status; status = bladerf_enable_module(dev, BLADERF_MODULE_RX, false); if (status != 0 && retval == 0) { retval = status; } status = bladerf_enable_module(dev, BLADERF_MODULE_TX, false); if (status != 0 && retval == 0) { retval = status; } tx_cal_state_deinit(&state); status = set_tx_cal_backup(dev, &backup); if (status != 0 && retval == 0) { retval = status; } return retval; } int dc_calibration(struct bladerf *dev, bladerf_module module, struct dc_calibration_params *params, size_t num_params, bool show_status) { int status; switch (module) { case BLADERF_MODULE_RX: status = dc_calibration_rx(dev, params, num_params, show_status); break; case BLADERF_MODULE_TX: status = dc_calibration_tx(dev, params, num_params, show_status); break; default: status = BLADERF_ERR_INVAL; } return status; }