#define _POSIX_C_SOURCE 200809L //for fileno and strdup #define _BSD_SOURCE #include #include #include #include #include #include #include //#include //code to use select instead of non-blocking is commented out. might decide to use it later. #include #define __USE_GNU //for longer math constants #include #include "config.h" #include "common.h" //choose which graphic's end you want here I guess? #include "graphics_x11.h" #include "graphics.h" //typedef float real; //think this conflicts? //TODO: will have to make some pixmaps get resized when the window does. //for now set them to be as big as you think you'll ever resize the window to. #define SKYRULE 90 #define SKYW (WIDTH*5) #define SKYH (HEIGHT/2) extern struct global global; struct gra_global gra_global; #ifdef GRAPHICAL //used to figure out what c2 values are associated with each edge of the window. //#define TOP 160.0 //#define BOTTOM -160.0 #define TOP 240.0 #define BOTTOM -240.0 #define RIGHT 320.0 #define LEFT -320.0 int c2sX(real x) { return (gra_global.width/(gra_global.split_screen / (gra_global.red_and_blue ? gra_global.split_screen: 1))) * ((x + RIGHT) / (RIGHT *2)) + gra_global.xoff; } int s2cX(real x) { return (x/(gra_global.width/(gra_global.split_screen / (gra_global.red_and_blue?gra_global.split_screen :1))))*(RIGHT*2)-RIGHT; } int c2sY(real y) { return gra_global.height * ((TOP-y) / (TOP*2)); } int s2cY(real y) { return -((y/gra_global.height) * (TOP*2) - TOP); } cs_t c2_to_cs(c2_t p) { return (cs_t){c2sX(p.x),c2sY(p.y)}; } c2_t cs_to_c2(cs_t p) { return (c2_t){s2cX(p.x),s2cY(p.y)}; } real distance2(c2_t p1,c2_t p2) { return sqrtl(( (p1.x-p2.x)*(p1.x-p2.x) )+( (p1.y-p2.y)*(p1.y-p2.y) )); } real distance3(c3_t p1,c3_t p2) { return sqrtl(( (p1.x-p2.x)*(p1.x-p2.x) )+( (p1.y-p2.y)*(p1.y-p2.y) )+( (p1.z-p2.z)*(p1.z-p2.z) )); } real points_to_angle(c2_t p1,c2_t p2) { real a=atan2l(p2.y-p1.y,p2.x-p1.x); return a>=0?a:M_PIl+M_PIl+a; } real d2r(int d) { while(d<0) d+=360; return (real)(d%360) / (real)180 * M_PIl; } int r2d(real r) { return r / M_PIl * 180; } int between_angles(real angle,real lower,real upper) { //lower may be higher than upper. //because lower is < 0 which wraps to higher. lower is 270, upper is 90. 270-90 is in front. if(lower > upper) { if(angle > lower) return 1; if(angle < upper) return 1; } if(upper > lower) { if(angle > lower && angle < upper) return 1; } return 0; } /* B (x2,y2) |-. c a| '-. | '-. '--------~ C b A (x1,y1) */ //I'll need this for collision I guess. /* //use this for finding a line that intersects with what the camera is pointing at c2_t get_c2_intersection(c2_t p1,real theta,c2_t p2) { real c; c=distance2(p1,p2); theta_a=C A B b = (c/1) * (theta_a + theta_offset) } int get_2D_intersection_X(x1,y1,theta_offset,x2,y2) { int x3a,y3a,x3b,y3b; int a,b,c;//lenght of sides. int theta_a,theta_b,theta_c;//angles opposite of same named sides. //get angle C A B theta_a= // x1,y1,x2,y2 //what are these d1 and d2? if(d1==d2) return global.math_error=1; c=dist(x1,y1,x2,y2); b = (c/1) * (theta_a + theta_offset); a = (c/1) * (theta_b + theta_offset); x3b=sin(theta_a) * b; y3b=cos(theta_a) * b; x3a=sin(theta_a) * a; y3a=cos(theta_a) * a; printf("x: %d %d\nx: %d %d\n",x3a,y3a,x3b,y3b); } int get_2D_intersection_Y(x,y,d,x,z,d) { int x3a,y3a,x3b,y3b; int a,b,c;//lenght of sides. int theta_a,theta_b,theta_c;//angles opposite of same named sides. //get angle from A to B. x1,y1,x2,y2 if(d1==d2) return global.math_error=1; c=dist(x1,y1,x2,y2); b = (c/1) * theta_a; a = (c/1) * theta_b; x3b=sin(a) * b; y3b=cos(a) * b; x3a=sin(a) * a; y3a=cos(a) * a; printf("y: %d %d\ny: %d %d\n",x3a,y3a,x3b,y3b); } */ void draw_c2_line(c2_t p1,c2_t p2) { draw_cs_line(c2_to_cs(p1),c2_to_cs(p2)); } void draw_c3_shape(c3_s_t s) {//outlined. needs to be filled? //draw minimap shit in here too? probably... int i; cs_s_t ss; ss.id=s.id;//it shouldn't disappear and we shouldn't need to make a copy. ss.len=s.len; for(i=0;ilen+(s->len==1);i++) { total=total+shitdist2(rotate_c3_yr(s->p[i],(c3_t){0,0,0},d2r(camera.yr)),camera.p); } return (total) / (real)(s->len+(s->len==1)); } void HatchLines(c2_t p1,c2_t p2,c2_t p3,int density) { real i=0; for(i=1;id) < (b->d)); } /* void draw_c3_point_text(c3_t p,char *text) { char tmp[256]; int direction,ascent,descent; cs_t p2; p2=c3_to_cs(p); snprintf(tmp,sizeof(tmp)-1,"(%Lf,%Lf,%Lf)",p.x,p.y,p.z); XTextExtents(font,text,strlen(text),&direction,&ascent,&descent,&overall); XDrawString(global.dpy,global.backbuffer,global.backgc,p2.x,p2.y+(descent+ascent),tmp,strlen(tmp)); }*/ //push a string back into stdin so it can be read by the file loader. :P int selfcommand(char *s) { char t; if(!strlen(s)) return 0; ungetc(s[strlen(s)-1],stdin); t=s[strlen(s)-1]; s[strlen(s)-1]=0; selfcommand(s); putchar(t); return 0; } #endif void draw_screen() { int i; int cn=0;//camera number. char tmp[256]; zsort_t zs[SHAPES]; clear_backbuffer(); real oldx=camera.p.x; real oldz=camera.p.z; if(gra_global.split_screen > 1) { camera.p.z-=(gra_global.split_flip)*((gra_global.split/gra_global.split_screen)*cosl(d2r(camera.yr+180))); camera.p.x-=(gra_global.split_flip)*((gra_global.split/gra_global.split_screen)*sinl(d2r(camera.yr+180))); } for(cn=0;cnid); } for(i=0;global.shape[i];i++) { //now we pick the color of this triangle! if(gra_global.red_and_blue) { if(cn==0) { // XSetForeground(global.dpy,global.backgc,global.red.pixel);//??? } else { // XSetForeground(global.dpy,global.backgc,global.blue.pixel);//??? } //tests of blending grayscale with red and blue // draw_c3_triangle(*(zs[i].t)); } else { if(!strcmp(global.selected_object,zs[i].s->id)) { //XSetForeground(global.dpy,global.backgc,global.green.pixel); } else { // set_color_based_on_distance(zs[i].d); } } // set_color(); set_color_based_on_distance(zs[i].d); draw_c3_shape(*(zs[i].s)); } // XSetForeground(global.dpy, global.backgc, global.green.pixel); if(global.debug) { snprintf(tmp,sizeof(tmp)-1,"selected object: %s",global.selected_object); draw_cs_text((cs_t){gra_global.xoff,(gra_global.height/2)+50},tmp); } camera.p.z+=(gra_global.split_flip)*(gra_global.split*cosl(d2r(camera.yr+180))); camera.p.x+=(gra_global.split_flip)*(gra_global.split*sinl(d2r(camera.yr+180))); } //TODO: figure out what all this shit is and either update or remove. //DONT USE WIDTH for shit. /* x1=nextX(WIDTH/2,HEIGHT/2,d2r(camera.yr),40); y1=nextY(WIDTH/2,HEIGHT/2,d2r(camera.yr),40); x2=nextX(WIDTH/2,HEIGHT/2,d2r(camera.yr+180),80); y2=nextY(WIDTH/2,HEIGHT/2,d2r(camera.yr+180),80); XDrawLine(global.dpy,w,gc,WIDTH/2,HEIGHT/2,x1,y1); XDrawLine(global.dpy,w,gc,WIDTH/2,HEIGHT/2,x2,y2); XDrawLine(global.dpy,w,gc,0,HEIGHT/2,WIDTH,HEIGHT/2); x1=global.mousex; y1=global.mousey; real a=points_to_angle((c2_t){0,0},cs_to_c2((cs_t){x1,y1})); snprintf(tmp,sizeof(tmp)-1,"%llf",a); XTextExtents(font,tmp,strlen(tmp),&direction,&ascent,&descent,&overall); XDrawString(global.dpy,w,gc,global.xoff,(descent+0+ascent)*6,tmp,strlen(tmp)); snprintf(tmp,sizeof(tmp)-1,"%llf",points_to_angle(cs_to_c2((cs_t){global.mousex,global.mousey}),(c2_t){0,0})+(M_PIl/2)); XTextExtents(font,tmp,strlen(tmp),&direction,&ascent,&descent,&overall); XDrawString(global.dpy,w,gc,global.xoff,(descent+0+ascent)*7,tmp,strlen(tmp)); XDrawLine(global.dpy,w,gc,global.mousex,global.mousey,global.width/2,global.height/2); real c=cosl(d2r(camera.yr) - a) * distance((c2_t){x1,y1},(c2_t){WIDTH/2,HEIGHT/2}); x2=nextX(x1,y1,d2r(camera.yr-90),c); y2=nextY(x1,y1,d2r(camera.yr-90),c); XDrawLine(global.dpy,w,gc,x1,y1,x2,y2); */ camera.p.x = oldx; camera.p.z = oldz; //-= cn*CAMERA_SEPARATION; flipscreen(); }