1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
title:Naive FFT implementation in C
keywords:c,linux,fir,dsp,octave,fft
# Naive FFT implementation in C
## Intro
<script>
MathJax = {
tex: {
inlineMath: [['$', '$'], ['\\(', '\\)']]
}
};
</script>
<script type="text/javascript" id="MathJax-script" async
src="/js/tex-chtml.js">
</script>
Time to implement DFT/FFT by myself. Just followed Ifeachor book on theory part and
IOWA FFT source on implementation side.
## Implementation
### DFT
$$X(k) = F_{D}[x(nT)] = $$
$$ \sum_{n=0}^{N-1} x(nT) e^{-jk\omega nT} , k=0,1,...,N-1 $$
```c
void dft(double *x_i, double *x_q, int n, int inv) {
double Wn,Wk;
//static array
//double Xi[DATA_SIZE],Xq[DATA_SIZE];
//dynamic array
double *Xi, *Xq;
double c,s;
int i,j;
Xi = malloc(n*sizeof(double));
Xq = malloc(n*sizeof(double));
Wn = 2*M_PI/n;
if (inv==1) {
Wn=-Wn;
}
for (i=0;i<n;i++) {
Xi[i] = 0.0f;
Xq[i] = 0.0f;
Wk = i*Wn;
for (j=0;j<n;j++) {
c = cos(j*Wk);
s = sin(j*Wk);
//i - real, q - imaginary
Xi[i] = Xi[i] + x_i[j]*c + x_q[j]*s;
Xq[i] = Xq[i] - x_i[j]*s + x_q[j]*c;
}
if (inv==1) {
Xi[i] = Xi[i]/n;
Xq[i] = Xq[i]/n;
}
}
for (i=0;i<n;i++) {
x_i[i] = Xi[i];
x_q[i] = Xq[i];
}
}
```
### FFT
#### Shuffling arrays
```c
void ffti_shuffle_1(double *x_i, double *x_q, uint64_t n) {
int Nd2 = n>>1;
int Nm1 = n-1;
int i,j;
for (i = 0, j = 0; i < n; i++) {
if (j > i) {
double tmp_r = x_i[i];
double tmp_i = x_q[i];
//data[i] = data[j];
x_i[i] = x_q[j];
x_q[i] = x_q[j];
//data[j] = tmp;
x_i[j] = tmp_r;
x_q[j] = tmp_i;
}
/*
* Find least significant zero bit
*/
unsigned lszb = ~i & (i + 1);
/*
* Use division to bit-reverse the single bit so that we now have
* the most significant zero bit
*
* N = 2^r = 2^(m+1)
* Nd2 = N/2 = 2^m
* if lszb = 2^k, where k is within the range of 0...m, then
* mszb = Nd2 / lszb
* = 2^m / 2^k
* = 2^(m-k)
* = bit-reversed value of lszb
*/
unsigned mszb = Nd2 / lszb;
/*
* Toggle bits with bit-reverse mask
*/
unsigned bits = Nm1 & ~(mszb - 1);
j ^= bits;
}
}
```
#### Implementation
```c
void fft_1(double *x_i, double *x_q, uint64_t n, uint64_t inv) {
uint64_t n_log2;
uint64_t r;
uint64_t m, md2;
uint64_t i,j,k;
uint64_t i_e, i_o;
double theta_2pi;
double theta;
double Wm_r, Wm_i, Wmk_r, Wmk_i;
double u_r, u_i, t_r, t_i;
//find log of n
i=n;
n_log2 = 0;
while (i>1) {
i=i/2;
n_log2+=1;
}
if (inv==1) {
theta_2pi = -2*M_PI;
} else {
theta_2pi = 2*M_PI;
}
for (i=1; i<= n_log2; i++) {
m = 1 << i;
md2 = m >> 1;
theta = theta_2pi / m;
Wm_r = cos(theta);
Wm_i = sin(theta);
for (j=0; j<n; j+=m) {
Wmk_r = 1.0f;
Wmk_i = 0.0f;
for (k=0; k<md2; k++) {
i_e = j+k;
i_o = i_e + md2;
u_r = x_i[i_e];
u_i = x_q[i_e];
t_r = complex_mul_re(Wmk_r, Wmk_i, x_i[i_o], x_q[i_o]);
t_i = complex_mul_im(Wmk_r, Wmk_i, x_i[i_o], x_q[i_o]);
x_i[i_e] = u_r + t_r;
x_q[i_e] = u_i + t_i;
x_i[i_o] = u_r - t_r;
x_q[i_o] = u_i - t_i;
t_r = complex_mul_re(Wmk_r, Wmk_i, Wm_r, Wm_i);
t_i = complex_mul_im(Wmk_r, Wmk_i, Wm_r, Wm_i);
Wmk_r = t_r;
Wmk_i = t_i;
}
}
}
```
## Octave verification code
```matlab
data1 = [1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]
res1 = fft(data1)
data2 = [1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0]
res2 = fft(data2)
data3 = [1.0 1.0 i i 0.0 0.0 0.0 0.0]
res3 = fft(data3)
data4 = [1.0+i 1.0+i 1.0+i 1.0+i 0.0 0.0 0.0 0.0]
res4 = fft(data4)
```
### Source
Source located in main branch of git repo
```
git clone http://git.main.lv/cgit.cgi/NaiveFFT.git
git checkout main
```
### Build
#### Linux
```
cd NaiveFFT/Build
make
```
#### Macos
Open with Xcode and build
## Links
[01] https://rosettacode.org/wiki/Fast_Fourier_transform#C
[02] https://www.math.wustl.edu/~victor/mfmm/fourier/fft.c
[03] https://www.strauss-engineering.ch/libdsp.html
[04] http://www.iowahills.com/FFTCode.html
[05] https://github.com/rshuston/FFT-C/blob/master/libfft/fft.c
[06] http://www.guitarscience.net/papers/fftalg.pdf
[07] https://root.cern/doc/master/FFT_8C_source.html
[08] https://lloydrochester.com/post/c/example-fft/
[09] https://github.com/mborgerding/kissfft/blob/master/kiss_fft.c
[10] https://community.vcvrack.com/t/complete-list-of-c-c-fft-libraries/9153
[11] https://octave.org/doc/v4.2.1/Signal-Processing.html
[12] https://en.wikipedia.org/wiki/Fast_Fourier_transform
[13] http://www.iowahills.com/FFTCode.html
[14] Digital Signal Processing: A Practical Approach by (Emmanuel Ifeachor, Barrie Jervis)
|