1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
title:Naive FFT implementation in C
keywords:c,linux,fir,dsp,octave,fft
# Naive FFT implementation in C
## Intro
<script>
MathJax = {
tex: {
inlineMath: [['$', '$'], ['\\(', '\\)']]
}
};
</script>
<script type="text/javascript" id="MathJax-script" async
src="/js/tex-chtml.js">
</script>
<script src="/demo/naive_fft/index.js"></script>
<script type='text/javascript'>
var Module = {};
fetch('/demo/naive_fft/index.wasm')
.then(response =>
response.arrayBuffer()
).then(buffer => {
//Module.canvas = document.getElementById("canvas");
Module.wasmBinary = buffer;
var script = document.createElement('script');
script.src = "/demo/naive_fft/index.js";
script.onload = function() {
console.log("Emscripten boilerplate loaded.");
run_dft = Module.cwrap("dft", [],[['float'],['float'],'number','number']);
run_fft_shuffle = Module.cwrap("ffti_shuffle_1", [],[['float'],['float'],'number']);
run_fft = Module.cwrap("fft_1", [],[['float'],['float'],'number','number']);
var inputDataI = document.querySelector('.inputDataI');
var inputDataIerr = document.querySelector('.inputDataIerr');
var inputDataQ = document.querySelector('.inputDataQ');
var inputDataQerr = document.querySelector('.inputDataQerr');
var outputDataI = document.querySelector('.outputDataI');
var outputDataQ = document.querySelector('.outputDataQ');
document.querySelector("#calcButton").onclick = function() {
console.log("calc FFT");
function cArray(size) {
var offset = Module._malloc(size * 8);
Module.HEAPF64.set(new Float64Array(size), offset / 8);
return {
"data": Module.HEAPF64.subarray(offset / 8, offset / 8 + size),
"offset": offset
}
}
function checkArr(inputData,errorOutput) {
var strArr = inputData.value;
strArr = strArr.replace(/ +(?= )/g,'');
var splArr = strArr.split(" ");
var data = Array(splArr.length).fill(0);
for (let i=0; i<splArr.length;i++) {
try {
var j=splArr[i];
if ( j != parseFloat(j)) throw new Error("ERROR: not float "+splArr[i]+" at index "+i);
data[i] = parseFloat(j)
} catch (err) {
console.log("Error: ",err.message)
errorOutput.innerHTML = err.message;
return {"result":false,"data":[]};
}
}
return {"result":true,"data":data};
}
console.log("checkArr");
var arrIok = checkArr(inputDataI,inputDataIerr);
console.log("checkArr");
var arrQok = checkArr(inputDataQ,inputDataQerr);
//max size 8 values, as thats enought for a demo
//https://stackoverflow.com/questions/17883799/how-to-handle-passing-returning-array-pointers-to-emscripten-compiled-code
if (!arrIok.result) return;
if (!arrQok.result) return;
var N=8;
var myArray_i = cArray(N);
var myArray_q = cArray(N);
//set test data
for(let i=0,j=0;i<N,j<arrIok.data.length;i++,j++) {
myArray_i.data[i] = arrIok.data[j];
}
for(let i=0,j=0;i<N,j<arrQok.data.length;i++,j++) {
myArray_q.data[i] = arrQok.data[j];
}
console.log(myArray_i.data);
console.log(myArray_q.data);
//DFT
run_dft(myArray_i.offset,myArray_q.offset,N,0);
//FFT
//run_fft_shuffle(myArray_i.offset,myArray_q.offset,N);
//run_fft(myArray_i.offset,myArray_q.offset,N,1);
console.log(myArray_i.data);
console.log(myArray_q.data)
function outputResult(array,output) {
var arr = Array(array.slice(0,N));
arr = arr.map(function(item){
return item.map(function(num){
return parseFloat(num.toFixed(4));
});
});
output.value = arr;
}
outputResult(myArray_i.data, outputDataI);
outputResult(myArray_q.data, outputDataQ);
}
} //end onload
document.body.appendChild(script);
});
</script>
Time to implement DFT/FFT by myself. Just followed Ifeachor book on theory part and
IOWA FFT source on implementation side.
## Implementation
### DFT
Formula for most simple Discreate Fourier Transformation. Also most slowest one.
Official DFT formula
$$X(k) = F_{D}[x(nT)] = $$
$$ \sum_{n=0}^{N-1} x(nT) e^{-jk\omega nT} , k=0,1,...,N-1 $$
My wording of DFT algorithm:
Go over data array and sumup multiplication of each "frequency" $$e^{-jk\omega nT}$$ over data array $$x(nT)$$
```c
void dft(double *x_i, double *x_q, int n, int inv) {
double Wn,Wk;
double *Xi, *Xq;
double c,s;
int i,j;
Xi = malloc(n*sizeof(double));
Xq = malloc(n*sizeof(double));
Wn = 2*M_PI/n;
if (inv==1) {
Wn=-Wn;
}
for (i=0;i<n;i++) {
Xi[i] = 0.0f;
Xq[i] = 0.0f;
Wk = i*Wn;
for (j=0;j<n;j++) {
c = cos(j*Wk);
s = sin(j*Wk);
//i - real, q - imaginary
Xi[i] = Xi[i] + x_i[j]*c + x_q[j]*s;
Xq[i] = Xq[i] - x_i[j]*s + x_q[j]*c;
}
if (inv==1) {
Xi[i] = Xi[i]/n;
Xq[i] = Xq[i]/n;
}
}
for (i=0;i<n;i++) {
x_i[i] = Xi[i];
x_q[i] = Xq[i];
}
}
```
### FFT
This is more advanced version of Fourier Transformation, with rearrangement of data there is possible to
reduce amount of calculations and that give speed increase.
DFT speed is
$$ O(N^2)$$
and FFT becomes as $$ O(N\log N) $$
#### Shuffling data
Rearranging data before running FFT
```c
void ffti_shuffle_1(double *x_i, double *x_q, uint64_t n) {
int Nd2 = n>>1;
int Nm1 = n-1;
int i,j;
for (i = 0, j = 0; i < n; i++) {
if (j > i) {
double tmp_r = x_i[i];
double tmp_i = x_q[i];
//data[i] = data[j];
x_i[i] = x_q[j];
x_q[i] = x_q[j];
//data[j] = tmp;
x_i[j] = tmp_r;
x_q[j] = tmp_i;
}
/*
* Find least significant zero bit
*/
unsigned lszb = ~i & (i + 1);
/*
* Use division to bit-reverse the single bit so that we now have
* the most significant zero bit
*
* N = 2^r = 2^(m+1)
* Nd2 = N/2 = 2^m
* if lszb = 2^k, where k is within the range of 0...m, then
* mszb = Nd2 / lszb
* = 2^m / 2^k
* = 2^(m-k)
* = bit-reversed value of lszb
*/
unsigned mszb = Nd2 / lszb;
/*
* Toggle bits with bit-reverse mask
*/
unsigned bits = Nm1 & ~(mszb - 1);
j ^= bits;
}
}
```
#### FFT Implementation
```c
void fft_1(double *x_i, double *x_q, uint64_t n, uint64_t inv) {
uint64_t n_log2;
uint64_t r;
uint64_t m, md2;
uint64_t i,j,k;
uint64_t i_e, i_o;
double theta_2pi;
double theta;
double Wm_r, Wm_i, Wmk_r, Wmk_i;
double u_r, u_i, t_r, t_i;
//find log of n
i=n;
n_log2 = 0;
while (i>1) {
i=i/2;
n_log2+=1;
}
if (inv==1) {
theta_2pi = -2*M_PI;
} else {
theta_2pi = 2*M_PI;
}
for (i=1; i<= n_log2; i++) {
m = 1 << i;
md2 = m >> 1;
theta = theta_2pi / m;
Wm_r = cos(theta);
Wm_i = sin(theta);
for (j=0; j<n; j+=m) {
Wmk_r = 1.0f;
Wmk_i = 0.0f;
for (k=0; k<md2; k++) {
i_e = j+k;
i_o = i_e + md2;
u_r = x_i[i_e];
u_i = x_q[i_e];
t_r = complex_mul_re(Wmk_r, Wmk_i, x_i[i_o], x_q[i_o]);
t_i = complex_mul_im(Wmk_r, Wmk_i, x_i[i_o], x_q[i_o]);
x_i[i_e] = u_r + t_r;
x_q[i_e] = u_i + t_i;
x_i[i_o] = u_r - t_r;
x_q[i_o] = u_i - t_i;
t_r = complex_mul_re(Wmk_r, Wmk_i, Wm_r, Wm_i);
t_i = complex_mul_im(Wmk_r, Wmk_i, Wm_r, Wm_i);
Wmk_r = t_r;
Wmk_i = t_i;
}
}
}
```
## Octave verification code
Quick verification of FFT and DFT with octave code
```matlab
data1 = [1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]
res1 = fft(data1)
data2 = [1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0]
res2 = fft(data2)
data3 = [1.0 1.0 i i 0.0 0.0 0.0 0.0]
res3 = fft(data3)
data4 = [1.0+i 1.0+i 1.0+i 1.0+i 0.0 0.0 0.0 0.0]
res4 = fft(data4)
```
### Demo
Here hookedup demo of compiled wasm fft code location of demo source http://git.main.lv/cgit.cgi/NaiveFFT.git/tree/Build/index.html?h=main
Two boxes for input and two boxes for output. Values set as vectors of complex numbers. First box for real
part, second box for imaginary part or in case of DSP IQ sample values.
Input I:<textarea class="inputDataI">1 1 0</textarea><sup class="inputDataIerr"></sup>
Input Q:<textarea class="inputDataQ">0 0 0</textarea><sup class="inputDataQerr"></sup>
Output I:<textarea class="outputDataI"></textarea>
Output Q:<textarea class="outputDataQ"></textarea>
<button id="calcButton" type="button">Cals</button>
### Source
Source located in main branch of git repo
Browse source http://git.main.lv/cgit.cgi/NaiveFFT.git
```
git clone http://git.main.lv/cgit.cgi/NaiveFFT.git
git checkout main
```
### Build
#### Linux
```
cd NaiveFFT/Build
make
```
#### Macos
Open with Xcode and build
## Thx
[Aleksejs](https://github.com/ivanovsaleksejs) - gave tips about js
[Dzuris]() - freedback on code
[#developerslv](discord.gg/e9t3a9NPBH) - having patiens for listening to js nonsence from js-newbie
## Links
[01] https://rosettacode.org/wiki/Fast_Fourier_transform#C
[02] https://www.math.wustl.edu/~victor/mfmm/fourier/fft.c
[03] https://www.strauss-engineering.ch/libdsp.html
[04] http://www.iowahills.com/FFTCode.html
[05] https://github.com/rshuston/FFT-C/blob/master/libfft/fft.c
[06] http://www.guitarscience.net/papers/fftalg.pdf
[07] https://root.cern/doc/master/FFT_8C_source.html
[08] https://lloydrochester.com/post/c/example-fft/
[09] https://github.com/mborgerding/kissfft/blob/master/kiss_fft.c
[10] https://community.vcvrack.com/t/complete-list-of-c-c-fft-libraries/9153
[11] https://octave.org/doc/v4.2.1/Signal-Processing.html
[12] https://en.wikipedia.org/wiki/Fast_Fourier_transform
[13] http://www.iowahills.com/FFTCode.html
[14] Digital Signal Processing: A Practical Approach by (Emmanuel Ifeachor, Barrie Jervis)
|