summaryrefslogtreecommitdiff
path: root/hardware/src/r820
diff options
context:
space:
mode:
Diffstat (limited to 'hardware/src/r820')
-rw-r--r--hardware/src/r820/include/reg_field.h60
-rw-r--r--hardware/src/r820/include/rtl-sdr.h408
-rw-r--r--hardware/src/r820/include/rtl-sdr_export.h47
-rw-r--r--hardware/src/r820/include/rtlsdr_i2c.h8
-rw-r--r--hardware/src/r820/include/tuner_e4k.h222
-rw-r--r--hardware/src/r820/include/tuner_fc0012.h36
-rw-r--r--hardware/src/r820/include/tuner_fc0013.h37
-rw-r--r--hardware/src/r820/include/tuner_fc2580.h127
-rw-r--r--hardware/src/r820/include/tuner_r82xx.h120
-rw-r--r--hardware/src/r820/r820.swift16
-rw-r--r--hardware/src/r820/src/librtlsdr.c2023
-rw-r--r--hardware/src/r820/src/r820sdr-Bridging-Header.h5
-rw-r--r--hardware/src/r820/src/tuner_e4k.c1000
-rw-r--r--hardware/src/r820/src/tuner_fc0012.c345
-rw-r--r--hardware/src/r820/src/tuner_fc0013.c500
-rw-r--r--hardware/src/r820/src/tuner_fc2580.c494
-rw-r--r--hardware/src/r820/src/tuner_r82xx.c1274
17 files changed, 6722 insertions, 0 deletions
diff --git a/hardware/src/r820/include/reg_field.h b/hardware/src/r820/include/reg_field.h
new file mode 100644
index 0000000..18a6922
--- /dev/null
+++ b/hardware/src/r820/include/reg_field.h
@@ -0,0 +1,60 @@
+#ifndef _REG_FIELD_H
+#define _REG_FIELD_H
+
+#include <stdint.h>
+#include <stdarg.h>
+
+enum cmd_op {
+ CMD_OP_GET = (1 << 0),
+ CMD_OP_SET = (1 << 1),
+ CMD_OP_EXEC = (1 << 2),
+};
+
+enum pstate {
+ ST_IN_CMD,
+ ST_IN_ARG,
+};
+
+struct strbuf {
+ uint8_t idx;
+ char buf[32];
+};
+
+struct cmd_state {
+ struct strbuf cmd;
+ struct strbuf arg;
+ enum pstate state;
+ void (*out)(const char *format, va_list ap);
+};
+
+struct cmd {
+ const char *cmd;
+ uint32_t ops;
+ int (*cb)(struct cmd_state *cs, enum cmd_op op, const char *cmd,
+ int argc, char **argv);
+ const char *help;
+};
+
+/* structure describing a field in a register */
+struct reg_field {
+ uint8_t reg;
+ uint8_t shift;
+ uint8_t width;
+};
+
+struct reg_field_ops {
+ const struct reg_field *fields;
+ const char **field_names;
+ uint32_t num_fields;
+ void *data;
+ int (*write_cb)(void *data, uint32_t reg, uint32_t val);
+ uint32_t (*read_cb)(void *data, uint32_t reg);
+};
+
+uint32_t reg_field_read(struct reg_field_ops *ops, struct reg_field *field);
+int reg_field_write(struct reg_field_ops *ops, struct reg_field *field, uint32_t val);
+int reg_field_cmd(struct cmd_state *cs, enum cmd_op op,
+ const char *cmd, int argc, char **argv,
+ struct reg_field_ops *ops);
+
+#endif
diff --git a/hardware/src/r820/include/rtl-sdr.h b/hardware/src/r820/include/rtl-sdr.h
new file mode 100644
index 0000000..44f2d59
--- /dev/null
+++ b/hardware/src/r820/include/rtl-sdr.h
@@ -0,0 +1,408 @@
+/*
+ * rtl-sdr, turns your Realtek RTL2832 based DVB dongle into a SDR receiver
+ * Copyright (C) 2012-2013 by Steve Markgraf <steve@steve-m.de>
+ * Copyright (C) 2012 by Dimitri Stolnikov <horiz0n@gmx.net>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef __RTL_SDR_H
+#define __RTL_SDR_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <stdint.h>
+#include <rtl-sdr_export.h>
+
+typedef struct rtlsdr_dev rtlsdr_dev_t;
+
+RTLSDR_API uint32_t rtlsdr_get_device_count(void);
+//uint32_t rtlsdr_get_device_count(void);
+
+RTLSDR_API const char* rtlsdr_get_device_name(uint32_t index);
+
+/*!
+ * Get USB device strings.
+ *
+ * NOTE: The string arguments must provide space for up to 256 bytes.
+ *
+ * \param index the device index
+ * \param manufact manufacturer name, may be NULL
+ * \param product product name, may be NULL
+ * \param serial serial number, may be NULL
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_get_device_usb_strings(uint32_t index,
+ char *manufact,
+ char *product,
+ char *serial);
+
+/*!
+ * Get device index by USB serial string descriptor.
+ *
+ * \param serial serial string of the device
+ * \return device index of first device where the name matched
+ * \return -1 if name is NULL
+ * \return -2 if no devices were found at all
+ * \return -3 if devices were found, but none with matching name
+ */
+RTLSDR_API int rtlsdr_get_index_by_serial(const char *serial);
+
+RTLSDR_API int rtlsdr_open(rtlsdr_dev_t **dev, uint32_t index);
+
+RTLSDR_API int rtlsdr_close(rtlsdr_dev_t *dev);
+
+/* configuration functions */
+
+/*!
+ * Set crystal oscillator frequencies used for the RTL2832 and the tuner IC.
+ *
+ * Usually both ICs use the same clock. Changing the clock may make sense if
+ * you are applying an external clock to the tuner or to compensate the
+ * frequency (and samplerate) error caused by the original (cheap) crystal.
+ *
+ * NOTE: Call this function only if you fully understand the implications.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param rtl_freq frequency value used to clock the RTL2832 in Hz
+ * \param tuner_freq frequency value used to clock the tuner IC in Hz
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_set_xtal_freq(rtlsdr_dev_t *dev, uint32_t rtl_freq,
+ uint32_t tuner_freq);
+
+/*!
+ * Get crystal oscillator frequencies used for the RTL2832 and the tuner IC.
+ *
+ * Usually both ICs use the same clock.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param rtl_freq frequency value used to clock the RTL2832 in Hz
+ * \param tuner_freq frequency value used to clock the tuner IC in Hz
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_get_xtal_freq(rtlsdr_dev_t *dev, uint32_t *rtl_freq,
+ uint32_t *tuner_freq);
+
+/*!
+ * Get USB device strings.
+ *
+ * NOTE: The string arguments must provide space for up to 256 bytes.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param manufact manufacturer name, may be NULL
+ * \param product product name, may be NULL
+ * \param serial serial number, may be NULL
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_get_usb_strings(rtlsdr_dev_t *dev, char *manufact,
+ char *product, char *serial);
+
+/*!
+ * Write the device EEPROM
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param data buffer of data to be written
+ * \param offset address where the data should be written
+ * \param len length of the data
+ * \return 0 on success
+ * \return -1 if device handle is invalid
+ * \return -2 if EEPROM size is exceeded
+ * \return -3 if no EEPROM was found
+ */
+
+RTLSDR_API int rtlsdr_write_eeprom(rtlsdr_dev_t *dev, uint8_t *data,
+ uint8_t offset, uint16_t len);
+
+/*!
+ * Read the device EEPROM
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param data buffer where the data should be written
+ * \param offset address where the data should be read from
+ * \param len length of the data
+ * \return 0 on success
+ * \return -1 if device handle is invalid
+ * \return -2 if EEPROM size is exceeded
+ * \return -3 if no EEPROM was found
+ */
+
+RTLSDR_API int rtlsdr_read_eeprom(rtlsdr_dev_t *dev, uint8_t *data,
+ uint8_t offset, uint16_t len);
+
+RTLSDR_API int rtlsdr_set_center_freq(rtlsdr_dev_t *dev, uint32_t freq);
+
+/*!
+ * Get actual frequency the device is tuned to.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \return 0 on error, frequency in Hz otherwise
+ */
+RTLSDR_API uint32_t rtlsdr_get_center_freq(rtlsdr_dev_t *dev);
+
+/*!
+ * Set the frequency correction value for the device.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param ppm correction value in parts per million (ppm)
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_set_freq_correction(rtlsdr_dev_t *dev, int ppm);
+
+/*!
+ * Get actual frequency correction value of the device.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \return correction value in parts per million (ppm)
+ */
+RTLSDR_API int rtlsdr_get_freq_correction(rtlsdr_dev_t *dev);
+
+enum rtlsdr_tuner {
+ RTLSDR_TUNER_UNKNOWN = 0,
+ RTLSDR_TUNER_E4000,
+ RTLSDR_TUNER_FC0012,
+ RTLSDR_TUNER_FC0013,
+ RTLSDR_TUNER_FC2580,
+ RTLSDR_TUNER_R820T,
+ RTLSDR_TUNER_R828D
+};
+
+/*!
+ * Get the tuner type.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \return RTLSDR_TUNER_UNKNOWN on error, tuner type otherwise
+ */
+RTLSDR_API enum rtlsdr_tuner rtlsdr_get_tuner_type(rtlsdr_dev_t *dev);
+
+/*!
+ * Get a list of gains supported by the tuner.
+ *
+ * NOTE: The gains argument must be preallocated by the caller. If NULL is
+ * being given instead, the number of available gain values will be returned.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param gains array of gain values. In tenths of a dB, 115 means 11.5 dB.
+ * \return <= 0 on error, number of available (returned) gain values otherwise
+ */
+RTLSDR_API int rtlsdr_get_tuner_gains(rtlsdr_dev_t *dev, int *gains);
+
+/*!
+ * Set the gain for the device.
+ * Manual gain mode must be enabled for this to work.
+ *
+ * Valid gain values (in tenths of a dB) for the E4000 tuner:
+ * -10, 15, 40, 65, 90, 115, 140, 165, 190,
+ * 215, 240, 290, 340, 420, 430, 450, 470, 490
+ *
+ * Valid gain values may be queried with \ref rtlsdr_get_tuner_gains function.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param gain in tenths of a dB, 115 means 11.5 dB.
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_set_tuner_gain(rtlsdr_dev_t *dev, int gain);
+
+/*!
+ * Set the bandwidth for the device.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param bw bandwidth in Hz. Zero means automatic BW selection.
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_set_tuner_bandwidth(rtlsdr_dev_t *dev, uint32_t bw);
+
+/*!
+ * Get actual gain the device is configured to.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \return 0 on error, gain in tenths of a dB, 115 means 11.5 dB.
+ */
+RTLSDR_API int rtlsdr_get_tuner_gain(rtlsdr_dev_t *dev);
+
+/*!
+ * Set the intermediate frequency gain for the device.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param stage intermediate frequency gain stage number (1 to 6 for E4000)
+ * \param gain in tenths of a dB, -30 means -3.0 dB.
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_set_tuner_if_gain(rtlsdr_dev_t *dev, int stage, int gain);
+
+/*!
+ * Set the gain mode (automatic/manual) for the device.
+ * Manual gain mode must be enabled for the gain setter function to work.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param manual gain mode, 1 means manual gain mode shall be enabled.
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_set_tuner_gain_mode(rtlsdr_dev_t *dev, int manual);
+
+/*!
+ * Set the sample rate for the device, also selects the baseband filters
+ * according to the requested sample rate for tuners where this is possible.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param rate the sample rate to be set, possible values are:
+ * 225001 - 300000 Hz
+ * 900001 - 3200000 Hz
+ * sample loss is to be expected for rates > 2400000
+ * \return 0 on success, -EINVAL on invalid rate
+ */
+RTLSDR_API int rtlsdr_set_sample_rate(rtlsdr_dev_t *dev, uint32_t rate);
+
+/*!
+ * Get actual sample rate the device is configured to.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \return 0 on error, sample rate in Hz otherwise
+ */
+RTLSDR_API uint32_t rtlsdr_get_sample_rate(rtlsdr_dev_t *dev);
+
+/*!
+ * Enable test mode that returns an 8 bit counter instead of the samples.
+ * The counter is generated inside the RTL2832.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param on mode, 1 means enabled, 0 disabled
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_set_testmode(rtlsdr_dev_t *dev, int on);
+
+/*!
+ * Enable or disable the internal digital AGC of the RTL2832.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param on AGC mode, 1 means enabled, 0 disabled
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_set_agc_mode(rtlsdr_dev_t *dev, int on);
+
+/*!
+ * Enable or disable the direct sampling mode. When enabled, the IF mode
+ * of the RTL2832 is activated, and rtlsdr_set_center_freq() will control
+ * the IF-frequency of the DDC, which can be used to tune from 0 to 28.8 MHz
+ * (xtal frequency of the RTL2832).
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param on 0 means disabled, 1 I-ADC input enabled, 2 Q-ADC input enabled
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_set_direct_sampling(rtlsdr_dev_t *dev, int on);
+
+/*!
+ * Get state of the direct sampling mode
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \return -1 on error, 0 means disabled, 1 I-ADC input enabled
+ * 2 Q-ADC input enabled
+ */
+RTLSDR_API int rtlsdr_get_direct_sampling(rtlsdr_dev_t *dev);
+
+/*!
+ * Enable or disable offset tuning for zero-IF tuners, which allows to avoid
+ * problems caused by the DC offset of the ADCs and 1/f noise.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param on 0 means disabled, 1 enabled
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_set_offset_tuning(rtlsdr_dev_t *dev, int on);
+
+/*!
+ * Get state of the offset tuning mode
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \return -1 on error, 0 means disabled, 1 enabled
+ */
+RTLSDR_API int rtlsdr_get_offset_tuning(rtlsdr_dev_t *dev);
+
+/* streaming functions */
+
+RTLSDR_API int rtlsdr_reset_buffer(rtlsdr_dev_t *dev);
+
+RTLSDR_API int rtlsdr_read_sync(rtlsdr_dev_t *dev, void *buf, int len, int *n_read);
+
+typedef void(*rtlsdr_read_async_cb_t)(unsigned char *buf, uint32_t len, void *ctx);
+
+/*!
+ * Read samples from the device asynchronously. This function will block until
+ * it is being canceled using rtlsdr_cancel_async()
+ *
+ * NOTE: This function is deprecated and is subject for removal.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param cb callback function to return received samples
+ * \param ctx user specific context to pass via the callback function
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_wait_async(rtlsdr_dev_t *dev, rtlsdr_read_async_cb_t cb, void *ctx);
+
+/*!
+ * Read samples from the device asynchronously. This function will block until
+ * it is being canceled using rtlsdr_cancel_async()
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param cb callback function to return received samples
+ * \param ctx user specific context to pass via the callback function
+ * \param buf_num optional buffer count, buf_num * buf_len = overall buffer size
+ * set to 0 for default buffer count (15)
+ * \param buf_len optional buffer length, must be multiple of 512,
+ * should be a multiple of 16384 (URB size), set to 0
+ * for default buffer length (16 * 32 * 512)
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_read_async(rtlsdr_dev_t *dev,
+ rtlsdr_read_async_cb_t cb,
+ void *ctx,
+ uint32_t buf_num,
+ uint32_t buf_len);
+
+/*!
+ * Cancel all pending asynchronous operations on the device.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \return 0 on success
+ */
+RTLSDR_API int rtlsdr_cancel_async(rtlsdr_dev_t *dev);
+
+/*!
+ * Enable or disable the bias tee on GPIO PIN 0.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param on 1 for Bias T on. 0 for Bias T off.
+ * \return -1 if device is not initialized. 0 otherwise.
+ */
+RTLSDR_API int rtlsdr_set_bias_tee(rtlsdr_dev_t *dev, int on);
+
+/*!
+ * Enable or disable the bias tee on the given GPIO pin.
+ *
+ * \param dev the device handle given by rtlsdr_open()
+ * \param gpio the gpio pin to configure as a Bias T control.
+ * \param on 1 for Bias T on. 0 for Bias T off.
+ * \return -1 if device is not initialized. 0 otherwise.
+ */
+RTLSDR_API int rtlsdr_set_bias_tee_gpio(rtlsdr_dev_t *dev, int gpio, int on);
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __RTL_SDR_H */
diff --git a/hardware/src/r820/include/rtl-sdr_export.h b/hardware/src/r820/include/rtl-sdr_export.h
new file mode 100644
index 0000000..69e178d
--- /dev/null
+++ b/hardware/src/r820/include/rtl-sdr_export.h
@@ -0,0 +1,47 @@
+/*
+ * rtl-sdr, turns your Realtek RTL2832 based DVB dongle into a SDR receiver
+ * Copyright (C) 2012 by Hoernchen <la@tfc-server.de>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef RTLSDR_EXPORT_H
+#define RTLSDR_EXPORT_H
+
+#if defined __GNUC__
+# if __GNUC__ >= 4
+# define __SDR_EXPORT __attribute__((visibility("default")))
+# define __SDR_IMPORT __attribute__((visibility("default")))
+# else
+# define __SDR_EXPORT
+# define __SDR_IMPORT
+# endif
+#elif _MSC_VER
+# define __SDR_EXPORT __declspec(dllexport)
+# define __SDR_IMPORT __declspec(dllimport)
+#else
+# define __SDR_EXPORT
+# define __SDR_IMPORT
+#endif
+
+#ifndef rtlsdr_STATIC
+# ifdef rtlsdr_EXPORTS
+# define RTLSDR_API __SDR_EXPORT
+# else
+# define RTLSDR_API __SDR_IMPORT
+# endif
+#else
+#define RTLSDR_API
+#endif
+#endif /* RTLSDR_EXPORT_H */
diff --git a/hardware/src/r820/include/rtlsdr_i2c.h b/hardware/src/r820/include/rtlsdr_i2c.h
new file mode 100644
index 0000000..7676689
--- /dev/null
+++ b/hardware/src/r820/include/rtlsdr_i2c.h
@@ -0,0 +1,8 @@
+#ifndef __I2C_H
+#define __I2C_H
+
+uint32_t rtlsdr_get_tuner_clock(void *dev);
+int rtlsdr_i2c_write_fn(void *dev, uint8_t addr, uint8_t *buf, int len);
+int rtlsdr_i2c_read_fn(void *dev, uint8_t addr, uint8_t *buf, int len);
+
+#endif
diff --git a/hardware/src/r820/include/tuner_e4k.h b/hardware/src/r820/include/tuner_e4k.h
new file mode 100644
index 0000000..79591ce
--- /dev/null
+++ b/hardware/src/r820/include/tuner_e4k.h
@@ -0,0 +1,222 @@
+#ifndef _E4K_TUNER_H
+#define _E4K_TUNER_H
+
+/*
+ * Elonics E4000 tuner driver
+ *
+ * (C) 2011-2012 by Harald Welte <laforge@gnumonks.org>
+ * (C) 2012 by Sylvain Munaut <tnt@246tNt.com>
+ * (C) 2012 by Hoernchen <la@tfc-server.de>
+ *
+ * All Rights Reserved
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#define E4K_I2C_ADDR 0xc8
+#define E4K_CHECK_ADDR 0x02
+#define E4K_CHECK_VAL 0x40
+
+enum e4k_reg {
+ E4K_REG_MASTER1 = 0x00,
+ E4K_REG_MASTER2 = 0x01,
+ E4K_REG_MASTER3 = 0x02,
+ E4K_REG_MASTER4 = 0x03,
+ E4K_REG_MASTER5 = 0x04,
+ E4K_REG_CLK_INP = 0x05,
+ E4K_REG_REF_CLK = 0x06,
+ E4K_REG_SYNTH1 = 0x07,
+ E4K_REG_SYNTH2 = 0x08,
+ E4K_REG_SYNTH3 = 0x09,
+ E4K_REG_SYNTH4 = 0x0a,
+ E4K_REG_SYNTH5 = 0x0b,
+ E4K_REG_SYNTH6 = 0x0c,
+ E4K_REG_SYNTH7 = 0x0d,
+ E4K_REG_SYNTH8 = 0x0e,
+ E4K_REG_SYNTH9 = 0x0f,
+ E4K_REG_FILT1 = 0x10,
+ E4K_REG_FILT2 = 0x11,
+ E4K_REG_FILT3 = 0x12,
+ // gap
+ E4K_REG_GAIN1 = 0x14,
+ E4K_REG_GAIN2 = 0x15,
+ E4K_REG_GAIN3 = 0x16,
+ E4K_REG_GAIN4 = 0x17,
+ // gap
+ E4K_REG_AGC1 = 0x1a,
+ E4K_REG_AGC2 = 0x1b,
+ E4K_REG_AGC3 = 0x1c,
+ E4K_REG_AGC4 = 0x1d,
+ E4K_REG_AGC5 = 0x1e,
+ E4K_REG_AGC6 = 0x1f,
+ E4K_REG_AGC7 = 0x20,
+ E4K_REG_AGC8 = 0x21,
+ // gap
+ E4K_REG_AGC11 = 0x24,
+ E4K_REG_AGC12 = 0x25,
+ // gap
+ E4K_REG_DC1 = 0x29,
+ E4K_REG_DC2 = 0x2a,
+ E4K_REG_DC3 = 0x2b,
+ E4K_REG_DC4 = 0x2c,
+ E4K_REG_DC5 = 0x2d,
+ E4K_REG_DC6 = 0x2e,
+ E4K_REG_DC7 = 0x2f,
+ E4K_REG_DC8 = 0x30,
+ // gap
+ E4K_REG_QLUT0 = 0x50,
+ E4K_REG_QLUT1 = 0x51,
+ E4K_REG_QLUT2 = 0x52,
+ E4K_REG_QLUT3 = 0x53,
+ // gap
+ E4K_REG_ILUT0 = 0x60,
+ E4K_REG_ILUT1 = 0x61,
+ E4K_REG_ILUT2 = 0x62,
+ E4K_REG_ILUT3 = 0x63,
+ // gap
+ E4K_REG_DCTIME1 = 0x70,
+ E4K_REG_DCTIME2 = 0x71,
+ E4K_REG_DCTIME3 = 0x72,
+ E4K_REG_DCTIME4 = 0x73,
+ E4K_REG_PWM1 = 0x74,
+ E4K_REG_PWM2 = 0x75,
+ E4K_REG_PWM3 = 0x76,
+ E4K_REG_PWM4 = 0x77,
+ E4K_REG_BIAS = 0x78,
+ E4K_REG_CLKOUT_PWDN = 0x7a,
+ E4K_REG_CHFILT_CALIB = 0x7b,
+ E4K_REG_I2C_REG_ADDR = 0x7d,
+ // FIXME
+};
+
+#define E4K_MASTER1_RESET (1 << 0)
+#define E4K_MASTER1_NORM_STBY (1 << 1)
+#define E4K_MASTER1_POR_DET (1 << 2)
+
+#define E4K_SYNTH1_PLL_LOCK (1 << 0)
+#define E4K_SYNTH1_BAND_SHIF 1
+
+#define E4K_SYNTH7_3PHASE_EN (1 << 3)
+
+#define E4K_SYNTH8_VCOCAL_UPD (1 << 2)
+
+#define E4K_FILT3_DISABLE (1 << 5)
+
+#define E4K_AGC1_LIN_MODE (1 << 4)
+#define E4K_AGC1_LNA_UPDATE (1 << 5)
+#define E4K_AGC1_LNA_G_LOW (1 << 6)
+#define E4K_AGC1_LNA_G_HIGH (1 << 7)
+
+#define E4K_AGC6_LNA_CAL_REQ (1 << 4)
+
+#define E4K_AGC7_MIX_GAIN_AUTO (1 << 0)
+#define E4K_AGC7_GAIN_STEP_5dB (1 << 5)
+
+#define E4K_AGC8_SENS_LIN_AUTO (1 << 0)
+
+#define E4K_AGC11_LNA_GAIN_ENH (1 << 0)
+
+#define E4K_DC1_CAL_REQ (1 << 0)
+
+#define E4K_DC5_I_LUT_EN (1 << 0)
+#define E4K_DC5_Q_LUT_EN (1 << 1)
+#define E4K_DC5_RANGE_DET_EN (1 << 2)
+#define E4K_DC5_RANGE_EN (1 << 3)
+#define E4K_DC5_TIMEVAR_EN (1 << 4)
+
+#define E4K_CLKOUT_DISABLE 0x96
+
+#define E4K_CHFCALIB_CMD (1 << 0)
+
+#define E4K_AGC1_MOD_MASK 0xF
+
+enum e4k_agc_mode {
+ E4K_AGC_MOD_SERIAL = 0x0,
+ E4K_AGC_MOD_IF_PWM_LNA_SERIAL = 0x1,
+ E4K_AGC_MOD_IF_PWM_LNA_AUTONL = 0x2,
+ E4K_AGC_MOD_IF_PWM_LNA_SUPERV = 0x3,
+ E4K_AGC_MOD_IF_SERIAL_LNA_PWM = 0x4,
+ E4K_AGC_MOD_IF_PWM_LNA_PWM = 0x5,
+ E4K_AGC_MOD_IF_DIG_LNA_SERIAL = 0x6,
+ E4K_AGC_MOD_IF_DIG_LNA_AUTON = 0x7,
+ E4K_AGC_MOD_IF_DIG_LNA_SUPERV = 0x8,
+ E4K_AGC_MOD_IF_SERIAL_LNA_AUTON = 0x9,
+ E4K_AGC_MOD_IF_SERIAL_LNA_SUPERV = 0xa,
+};
+
+enum e4k_band {
+ E4K_BAND_VHF2 = 0,
+ E4K_BAND_VHF3 = 1,
+ E4K_BAND_UHF = 2,
+ E4K_BAND_L = 3,
+};
+
+enum e4k_mixer_filter_bw {
+ E4K_F_MIX_BW_27M = 0,
+ E4K_F_MIX_BW_4M6 = 8,
+ E4K_F_MIX_BW_4M2 = 9,
+ E4K_F_MIX_BW_3M8 = 10,
+ E4K_F_MIX_BW_3M4 = 11,
+ E4K_F_MIX_BW_3M = 12,
+ E4K_F_MIX_BW_2M7 = 13,
+ E4K_F_MIX_BW_2M3 = 14,
+ E4K_F_MIX_BW_1M9 = 15,
+};
+
+enum e4k_if_filter {
+ E4K_IF_FILTER_MIX,
+ E4K_IF_FILTER_CHAN,
+ E4K_IF_FILTER_RC
+};
+struct e4k_pll_params {
+ uint32_t fosc;
+ uint32_t intended_flo;
+ uint32_t flo;
+ uint16_t x;
+ uint8_t z;
+ uint8_t r;
+ uint8_t r_idx;
+ uint8_t threephase;
+};
+
+struct e4k_state {
+ void *i2c_dev;
+ uint8_t i2c_addr;
+ enum e4k_band band;
+ struct e4k_pll_params vco;
+ void *rtl_dev;
+};
+
+int e4k_init(struct e4k_state *e4k);
+int e4k_standby(struct e4k_state *e4k, int enable);
+int e4k_if_gain_set(struct e4k_state *e4k, uint8_t stage, int8_t value);
+int e4k_mixer_gain_set(struct e4k_state *e4k, int8_t value);
+int e4k_commonmode_set(struct e4k_state *e4k, int8_t value);
+int e4k_tune_freq(struct e4k_state *e4k, uint32_t freq);
+int e4k_tune_params(struct e4k_state *e4k, struct e4k_pll_params *p);
+uint32_t e4k_compute_pll_params(struct e4k_pll_params *oscp, uint32_t fosc, uint32_t intended_flo);
+int e4k_if_filter_bw_get(struct e4k_state *e4k, enum e4k_if_filter filter);
+int e4k_if_filter_bw_set(struct e4k_state *e4k, enum e4k_if_filter filter,
+ uint32_t bandwidth);
+int e4k_if_filter_chan_enable(struct e4k_state *e4k, int on);
+int e4k_rf_filter_set(struct e4k_state *e4k);
+
+int e4k_manual_dc_offset(struct e4k_state *e4k, int8_t iofs, int8_t irange, int8_t qofs, int8_t qrange);
+int e4k_dc_offset_calibrate(struct e4k_state *e4k);
+int e4k_dc_offset_gen_table(struct e4k_state *e4k);
+
+int e4k_set_lna_gain(struct e4k_state *e4k, int32_t gain);
+int e4k_enable_manual_gain(struct e4k_state *e4k, uint8_t manual);
+int e4k_set_enh_gain(struct e4k_state *e4k, int32_t gain);
+#endif /* _E4K_TUNER_H */
diff --git a/hardware/src/r820/include/tuner_fc0012.h b/hardware/src/r820/include/tuner_fc0012.h
new file mode 100644
index 0000000..9dd5356
--- /dev/null
+++ b/hardware/src/r820/include/tuner_fc0012.h
@@ -0,0 +1,36 @@
+/*
+ * Fitipower FC0012 tuner driver
+ *
+ * Copyright (C) 2012 Hans-Frieder Vogt <hfvogt@gmx.net>
+ *
+ * modified for use in librtlsdr
+ * Copyright (C) 2012 Steve Markgraf <steve@steve-m.de>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ */
+
+#ifndef _FC0012_H_
+#define _FC0012_H_
+
+#define FC0012_I2C_ADDR 0xc6
+#define FC0012_CHECK_ADDR 0x00
+#define FC0012_CHECK_VAL 0xa1
+
+int fc0012_init(void *dev);
+int fc0012_set_params(void *dev, uint32_t freq, uint32_t bandwidth);
+int fc0012_set_gain(void *dev, int gain);
+
+#endif
diff --git a/hardware/src/r820/include/tuner_fc0013.h b/hardware/src/r820/include/tuner_fc0013.h
new file mode 100644
index 0000000..68a26ee
--- /dev/null
+++ b/hardware/src/r820/include/tuner_fc0013.h
@@ -0,0 +1,37 @@
+/*
+ * Fitipower FC0013 tuner driver
+ *
+ * Copyright (C) 2012 Hans-Frieder Vogt <hfvogt@gmx.net>
+ *
+ * modified for use in librtlsdr
+ * Copyright (C) 2012 Steve Markgraf <steve@steve-m.de>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ */
+
+#ifndef _FC0013_H_
+#define _FC0013_H_
+
+#define FC0013_I2C_ADDR 0xc6
+#define FC0013_CHECK_ADDR 0x00
+#define FC0013_CHECK_VAL 0xa3
+
+int fc0013_init(void *dev);
+int fc0013_set_params(void *dev, uint32_t freq, uint32_t bandwidth);
+int fc0013_set_gain_mode(void *dev, int manual);
+int fc0013_set_lna_gain(void *dev, int gain);
+
+#endif
diff --git a/hardware/src/r820/include/tuner_fc2580.h b/hardware/src/r820/include/tuner_fc2580.h
new file mode 100644
index 0000000..9ebd935
--- /dev/null
+++ b/hardware/src/r820/include/tuner_fc2580.h
@@ -0,0 +1,127 @@
+#ifndef __TUNER_FC2580_H
+#define __TUNER_FC2580_H
+
+#define BORDER_FREQ 2600000 //2.6GHz : The border frequency which determines whether Low VCO or High VCO is used
+#define USE_EXT_CLK 0 //0 : Use internal XTAL Oscillator / 1 : Use External Clock input
+#define OFS_RSSI 57
+
+#define FC2580_I2C_ADDR 0xac
+#define FC2580_CHECK_ADDR 0x01
+#define FC2580_CHECK_VAL 0x56
+
+typedef enum {
+ FC2580_UHF_BAND,
+ FC2580_L_BAND,
+ FC2580_VHF_BAND,
+ FC2580_NO_BAND
+} fc2580_band_type;
+
+typedef enum {
+ FC2580_FCI_FAIL,
+ FC2580_FCI_SUCCESS
+} fc2580_fci_result_type;
+
+enum FUNCTION_STATUS
+{
+ FUNCTION_SUCCESS,
+ FUNCTION_ERROR,
+};
+
+extern void fc2580_wait_msec(void *pTuner, int a);
+
+fc2580_fci_result_type fc2580_i2c_write(void *pTuner, unsigned char reg, unsigned char val);
+fc2580_fci_result_type fc2580_i2c_read(void *pTuner, unsigned char reg, unsigned char *read_data);
+
+/*==============================================================================
+ fc2580 initial setting
+
+ This function is a generic function which gets called to initialize
+
+ fc2580 in DVB-H mode or L-Band TDMB mode
+
+ <input parameter>
+
+ ifagc_mode
+ type : integer
+ 1 : Internal AGC
+ 2 : Voltage Control Mode
+
+==============================================================================*/
+fc2580_fci_result_type fc2580_set_init(void *pTuner, int ifagc_mode, unsigned int freq_xtal );
+
+/*==============================================================================
+ fc2580 frequency setting
+
+ This function is a generic function which gets called to change LO Frequency
+
+ of fc2580 in DVB-H mode or L-Band TDMB mode
+
+ <input parameter>
+
+ f_lo
+ Value of target LO Frequency in 'kHz' unit
+ ex) 2.6GHz = 2600000
+
+==============================================================================*/
+fc2580_fci_result_type fc2580_set_freq(void *pTuner, unsigned int f_lo, unsigned int freq_xtal );
+
+
+/*==============================================================================
+ fc2580 filter BW setting
+
+ This function is a generic function which gets called to change Bandwidth
+
+ frequency of fc2580's channel selection filter
+
+ <input parameter>
+
+ filter_bw
+ 1 : 1.53MHz(TDMB)
+ 6 : 6MHz
+ 7 : 7MHz
+ 8 : 7.8MHz
+
+
+==============================================================================*/
+fc2580_fci_result_type fc2580_set_filter( void *pTuner, unsigned char filter_bw, unsigned int freq_xtal );
+
+// The following context is FC2580 tuner API source code
+// Definitions
+
+// AGC mode
+enum FC2580_AGC_MODE
+{
+ FC2580_AGC_INTERNAL = 1,
+ FC2580_AGC_EXTERNAL = 2,
+};
+
+
+// Bandwidth mode
+enum FC2580_BANDWIDTH_MODE
+{
+ FC2580_BANDWIDTH_1530000HZ = 1,
+ FC2580_BANDWIDTH_6000000HZ = 6,
+ FC2580_BANDWIDTH_7000000HZ = 7,
+ FC2580_BANDWIDTH_8000000HZ = 8,
+};
+
+// Manipulaing functions
+int
+fc2580_Initialize(
+ void *pTuner
+ );
+
+int
+fc2580_SetRfFreqHz(
+ void *pTuner,
+ unsigned long RfFreqHz
+ );
+
+// Extra manipulaing functions
+int
+fc2580_SetBandwidthMode(
+ void *pTuner,
+ int BandwidthMode
+ );
+
+#endif
diff --git a/hardware/src/r820/include/tuner_r82xx.h b/hardware/src/r820/include/tuner_r82xx.h
new file mode 100644
index 0000000..f6c206a
--- /dev/null
+++ b/hardware/src/r820/include/tuner_r82xx.h
@@ -0,0 +1,120 @@
+/*
+ * Rafael Micro R820T/R828D driver
+ *
+ * Copyright (C) 2013 Mauro Carvalho Chehab <mchehab@redhat.com>
+ * Copyright (C) 2013 Steve Markgraf <steve@steve-m.de>
+ *
+ * This driver is a heavily modified version of the driver found in the
+ * Linux kernel:
+ * http://git.linuxtv.org/linux-2.6.git/history/HEAD:/drivers/media/tuners/r820t.c
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef R82XX_H
+#define R82XX_H
+
+#define R820T_I2C_ADDR 0x34
+#define R828D_I2C_ADDR 0x74
+#define R828D_XTAL_FREQ 16000000
+
+#define R82XX_CHECK_ADDR 0x00
+#define R82XX_CHECK_VAL 0x69
+
+#define R82XX_IF_FREQ 3570000
+
+#define REG_SHADOW_START 5
+#define NUM_REGS 30
+#define NUM_IMR 5
+#define IMR_TRIAL 9
+
+#define VER_NUM 49
+
+enum r82xx_chip {
+ CHIP_R820T,
+ CHIP_R620D,
+ CHIP_R828D,
+ CHIP_R828,
+ CHIP_R828S,
+ CHIP_R820C,
+};
+
+enum r82xx_tuner_type {
+ TUNER_RADIO = 1,
+ TUNER_ANALOG_TV,
+ TUNER_DIGITAL_TV
+};
+
+enum r82xx_xtal_cap_value {
+ XTAL_LOW_CAP_30P = 0,
+ XTAL_LOW_CAP_20P,
+ XTAL_LOW_CAP_10P,
+ XTAL_LOW_CAP_0P,
+ XTAL_HIGH_CAP_0P
+};
+
+struct r82xx_config {
+ uint8_t i2c_addr;
+ uint32_t xtal;
+ enum r82xx_chip rafael_chip;
+ unsigned int max_i2c_msg_len;
+ int use_predetect;
+};
+
+struct r82xx_priv {
+ struct r82xx_config *cfg;
+
+ uint8_t regs[NUM_REGS];
+ uint8_t buf[NUM_REGS + 1];
+ enum r82xx_xtal_cap_value xtal_cap_sel;
+ uint16_t pll; /* kHz */
+ uint32_t int_freq;
+ uint8_t fil_cal_code;
+ uint8_t input;
+ int has_lock;
+ int init_done;
+
+ /* Store current mode */
+ uint32_t delsys;
+ enum r82xx_tuner_type type;
+
+ uint32_t bw; /* in MHz */
+
+ void *rtl_dev;
+};
+
+struct r82xx_freq_range {
+ uint32_t freq;
+ uint8_t open_d;
+ uint8_t rf_mux_ploy;
+ uint8_t tf_c;
+ uint8_t xtal_cap20p;
+ uint8_t xtal_cap10p;
+ uint8_t xtal_cap0p;
+};
+
+enum r82xx_delivery_system {
+ SYS_UNDEFINED,
+ SYS_DVBT,
+ SYS_DVBT2,
+ SYS_ISDBT,
+};
+
+int r82xx_standby(struct r82xx_priv *priv);
+int r82xx_init(struct r82xx_priv *priv);
+int r82xx_set_freq(struct r82xx_priv *priv, uint32_t freq);
+int r82xx_set_gain(struct r82xx_priv *priv, int set_manual_gain, int gain);
+int r82xx_set_bandwidth(struct r82xx_priv *priv, int bandwidth, uint32_t rate);
+
+#endif
diff --git a/hardware/src/r820/r820.swift b/hardware/src/r820/r820.swift
new file mode 100644
index 0000000..18d9af4
--- /dev/null
+++ b/hardware/src/r820/r820.swift
@@ -0,0 +1,16 @@
+//
+// r820.swift
+// r820sdr
+//
+// Created by Jacky Jack on 10/03/2022.
+//
+
+import Foundation
+
+
+final class r820sdr {
+ //let deviceCounr = rtlsdr_get_device_count()
+ //r820sdr.rtlsdr_get_device_count()
+ //libusb_open(1, 1);
+ //r82xx
+}
diff --git a/hardware/src/r820/src/librtlsdr.c b/hardware/src/r820/src/librtlsdr.c
new file mode 100644
index 0000000..096abae
--- /dev/null
+++ b/hardware/src/r820/src/librtlsdr.c
@@ -0,0 +1,2023 @@
+/*
+ * rtl-sdr, turns your Realtek RTL2832 based DVB dongle into a SDR receiver
+ * Copyright (C) 2012-2014 by Steve Markgraf <steve@steve-m.de>
+ * Copyright (C) 2012 by Dimitri Stolnikov <horiz0n@gmx.net>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <errno.h>
+#include <signal.h>
+#include <string.h>
+#include <stdio.h>
+#include <stdlib.h>
+#ifndef _WIN32
+#include <unistd.h>
+#define min(a, b) (((a) < (b)) ? (a) : (b))
+#endif
+
+#include <libusb.h>
+
+/*
+ * All libusb callback functions should be marked with the LIBUSB_CALL macro
+ * to ensure that they are compiled with the same calling convention as libusb.
+ *
+ * If the macro isn't available in older libusb versions, we simply define it.
+ */
+#ifndef LIBUSB_CALL
+#define LIBUSB_CALL
+#endif
+
+/* two raised to the power of n */
+#define TWO_POW(n) ((double)(1ULL<<(n)))
+
+#include "rtl-sdr.h"
+#include "tuner_e4k.h"
+#include "tuner_fc0012.h"
+#include "tuner_fc0013.h"
+#include "tuner_fc2580.h"
+#include "tuner_r82xx.h"
+
+typedef struct rtlsdr_tuner_iface {
+ /* tuner interface */
+ int (*init)(void *);
+ int (*exit)(void *);
+ int (*set_freq)(void *, uint32_t freq /* Hz */);
+ int (*set_bw)(void *, int bw /* Hz */);
+ int (*set_gain)(void *, int gain /* tenth dB */);
+ int (*set_if_gain)(void *, int stage, int gain /* tenth dB */);
+ int (*set_gain_mode)(void *, int manual);
+} rtlsdr_tuner_iface_t;
+
+enum rtlsdr_async_status {
+ RTLSDR_INACTIVE = 0,
+ RTLSDR_CANCELING,
+ RTLSDR_RUNNING
+};
+
+#define FIR_LEN 16
+
+/*
+ * FIR coefficients.
+ *
+ * The filter is running at XTal frequency. It is symmetric filter with 32
+ * coefficients. Only first 16 coefficients are specified, the other 16
+ * use the same values but in reversed order. The first coefficient in
+ * the array is the outer one, the last, the last is the inner one.
+ * First 8 coefficients are 8 bit signed integers, the next 8 coefficients
+ * are 12 bit signed integers. All coefficients have the same weight.
+ *
+ * Default FIR coefficients used for DAB/FM by the Windows driver,
+ * the DVB driver uses different ones
+ */
+static const int fir_default[FIR_LEN] = {
+ -54, -36, -41, -40, -32, -14, 14, 53, /* 8 bit signed */
+ 101, 156, 215, 273, 327, 372, 404, 421 /* 12 bit signed */
+};
+
+struct rtlsdr_dev {
+ libusb_context *ctx;
+ struct libusb_device_handle *devh;
+ uint32_t xfer_buf_num;
+ uint32_t xfer_buf_len;
+ struct libusb_transfer **xfer;
+ unsigned char **xfer_buf;
+ rtlsdr_read_async_cb_t cb;
+ void *cb_ctx;
+ enum rtlsdr_async_status async_status;
+ int async_cancel;
+ int use_zerocopy;
+ /* rtl demod context */
+ uint32_t rate; /* Hz */
+ uint32_t rtl_xtal; /* Hz */
+ int fir[FIR_LEN];
+ int direct_sampling;
+ /* tuner context */
+ enum rtlsdr_tuner tuner_type;
+ rtlsdr_tuner_iface_t *tuner;
+ uint32_t tun_xtal; /* Hz */
+ uint32_t freq; /* Hz */
+ uint32_t bw;
+ uint32_t offs_freq; /* Hz */
+ int corr; /* ppm */
+ int gain; /* tenth dB */
+ struct e4k_state e4k_s;
+ struct r82xx_config r82xx_c;
+ struct r82xx_priv r82xx_p;
+ /* status */
+ int dev_lost;
+ int driver_active;
+ unsigned int xfer_errors;
+};
+
+void rtlsdr_set_gpio_bit(rtlsdr_dev_t *dev, uint8_t gpio, int val);
+static int rtlsdr_set_if_freq(rtlsdr_dev_t *dev, uint32_t freq);
+
+/* generic tuner interface functions, shall be moved to the tuner implementations */
+int e4000_init(void *dev) {
+ rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
+ devt->e4k_s.i2c_addr = E4K_I2C_ADDR;
+ rtlsdr_get_xtal_freq(devt, NULL, &devt->e4k_s.vco.fosc);
+ devt->e4k_s.rtl_dev = dev;
+ return e4k_init(&devt->e4k_s);
+}
+int e4000_exit(void *dev) {
+ rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
+ return e4k_standby(&devt->e4k_s, 1);
+}
+int e4000_set_freq(void *dev, uint32_t freq) {
+ rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
+ return e4k_tune_freq(&devt->e4k_s, freq);
+}
+
+int e4000_set_bw(void *dev, int bw) {
+ int r = 0;
+ rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
+
+ r |= e4k_if_filter_bw_set(&devt->e4k_s, E4K_IF_FILTER_MIX, bw);
+ r |= e4k_if_filter_bw_set(&devt->e4k_s, E4K_IF_FILTER_RC, bw);
+ r |= e4k_if_filter_bw_set(&devt->e4k_s, E4K_IF_FILTER_CHAN, bw);
+
+ return r;
+}
+
+int e4000_set_gain(void *dev, int gain) {
+ rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
+ int mixgain = (gain > 340) ? 12 : 4;
+#if 0
+ int enhgain = (gain - 420);
+#endif
+ if(e4k_set_lna_gain(&devt->e4k_s, min(300, gain - mixgain * 10)) == -EINVAL)
+ return -1;
+ if(e4k_mixer_gain_set(&devt->e4k_s, mixgain) == -EINVAL)
+ return -1;
+#if 0 /* enhanced mixer gain seems to have no effect */
+ if(enhgain >= 0)
+ if(e4k_set_enh_gain(&devt->e4k_s, enhgain) == -EINVAL)
+ return -1;
+#endif
+ return 0;
+}
+int e4000_set_if_gain(void *dev, int stage, int gain) {
+ rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
+ return e4k_if_gain_set(&devt->e4k_s, (uint8_t)stage, (int8_t)(gain / 10));
+}
+int e4000_set_gain_mode(void *dev, int manual) {
+ rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
+ return e4k_enable_manual_gain(&devt->e4k_s, manual);
+}
+
+int _fc0012_init(void *dev) { return fc0012_init(dev); }
+int fc0012_exit(void *dev) { return 0; }
+int fc0012_set_freq(void *dev, uint32_t freq) {
+ /* select V-band/U-band filter */
+ rtlsdr_set_gpio_bit(dev, 6, (freq > 300000000) ? 1 : 0);
+ return fc0012_set_params(dev, freq, 6000000);
+}
+int fc0012_set_bw(void *dev, int bw) { return 0; }
+int _fc0012_set_gain(void *dev, int gain) { return fc0012_set_gain(dev, gain); }
+int fc0012_set_gain_mode(void *dev, int manual) { return 0; }
+
+int _fc0013_init(void *dev) { return fc0013_init(dev); }
+int fc0013_exit(void *dev) { return 0; }
+int fc0013_set_freq(void *dev, uint32_t freq) {
+ return fc0013_set_params(dev, freq, 6000000);
+}
+int fc0013_set_bw(void *dev, int bw) { return 0; }
+int _fc0013_set_gain(void *dev, int gain) { return fc0013_set_lna_gain(dev, gain); }
+
+int fc2580_init(void *dev) { return fc2580_Initialize(dev); }
+int fc2580_exit(void *dev) { return 0; }
+int _fc2580_set_freq(void *dev, uint32_t freq) {
+ return fc2580_SetRfFreqHz(dev, freq);
+}
+int fc2580_set_bw(void *dev, int bw) { return fc2580_SetBandwidthMode(dev, 1); }
+int fc2580_set_gain(void *dev, int gain) { return 0; }
+int fc2580_set_gain_mode(void *dev, int manual) { return 0; }
+
+int r820t_init(void *dev) {
+ rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
+ devt->r82xx_p.rtl_dev = dev;
+
+ if (devt->tuner_type == RTLSDR_TUNER_R828D) {
+ devt->r82xx_c.i2c_addr = R828D_I2C_ADDR;
+ devt->r82xx_c.rafael_chip = CHIP_R828D;
+ } else {
+ devt->r82xx_c.i2c_addr = R820T_I2C_ADDR;
+ devt->r82xx_c.rafael_chip = CHIP_R820T;
+ }
+
+ rtlsdr_get_xtal_freq(devt, NULL, &devt->r82xx_c.xtal);
+
+ devt->r82xx_c.max_i2c_msg_len = 8;
+ devt->r82xx_c.use_predetect = 0;
+ devt->r82xx_p.cfg = &devt->r82xx_c;
+
+ return r82xx_init(&devt->r82xx_p);
+}
+int r820t_exit(void *dev) {
+ rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
+ return r82xx_standby(&devt->r82xx_p);
+}
+
+int r820t_set_freq(void *dev, uint32_t freq) {
+ rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
+ return r82xx_set_freq(&devt->r82xx_p, freq);
+}
+
+int r820t_set_bw(void *dev, int bw) {
+ int r;
+ rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
+
+ r = r82xx_set_bandwidth(&devt->r82xx_p, bw, devt->rate);
+ if(r < 0)
+ return r;
+ r = rtlsdr_set_if_freq(devt, r);
+ if (r)
+ return r;
+ return rtlsdr_set_center_freq(devt, devt->freq);
+}
+
+int r820t_set_gain(void *dev, int gain) {
+ rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
+ return r82xx_set_gain(&devt->r82xx_p, 1, gain);
+}
+int r820t_set_gain_mode(void *dev, int manual) {
+ rtlsdr_dev_t* devt = (rtlsdr_dev_t*)dev;
+ return r82xx_set_gain(&devt->r82xx_p, manual, 0);
+}
+
+/* definition order must match enum rtlsdr_tuner */
+static rtlsdr_tuner_iface_t tuners[] = {
+ {
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL /* dummy for unknown tuners */
+ },
+ {
+ e4000_init, e4000_exit,
+ e4000_set_freq, e4000_set_bw, e4000_set_gain, e4000_set_if_gain,
+ e4000_set_gain_mode
+ },
+ {
+ _fc0012_init, fc0012_exit,
+ fc0012_set_freq, fc0012_set_bw, _fc0012_set_gain, NULL,
+ fc0012_set_gain_mode
+ },
+ {
+ _fc0013_init, fc0013_exit,
+ fc0013_set_freq, fc0013_set_bw, _fc0013_set_gain, NULL,
+ fc0013_set_gain_mode
+ },
+ {
+ fc2580_init, fc2580_exit,
+ _fc2580_set_freq, fc2580_set_bw, fc2580_set_gain, NULL,
+ fc2580_set_gain_mode
+ },
+ {
+ r820t_init, r820t_exit,
+ r820t_set_freq, r820t_set_bw, r820t_set_gain, NULL,
+ r820t_set_gain_mode
+ },
+ {
+ r820t_init, r820t_exit,
+ r820t_set_freq, r820t_set_bw, r820t_set_gain, NULL,
+ r820t_set_gain_mode
+ },
+};
+
+typedef struct rtlsdr_dongle {
+ uint16_t vid;
+ uint16_t pid;
+ const char *name;
+} rtlsdr_dongle_t;
+
+/*
+ * Please add your device here and send a patch to osmocom-sdr@lists.osmocom.org
+ */
+static rtlsdr_dongle_t known_devices[] = {
+ { 0x0bda, 0x2832, "Generic RTL2832U" },
+ { 0x0bda, 0x2838, "Generic RTL2832U OEM" },
+ { 0x0413, 0x6680, "DigitalNow Quad DVB-T PCI-E card" },
+ { 0x0413, 0x6f0f, "Leadtek WinFast DTV Dongle mini D" },
+ { 0x0458, 0x707f, "Genius TVGo DVB-T03 USB dongle (Ver. B)" },
+ { 0x0ccd, 0x00a9, "Terratec Cinergy T Stick Black (rev 1)" },
+ { 0x0ccd, 0x00b3, "Terratec NOXON DAB/DAB+ USB dongle (rev 1)" },
+ { 0x0ccd, 0x00b4, "Terratec Deutschlandradio DAB Stick" },
+ { 0x0ccd, 0x00b5, "Terratec NOXON DAB Stick - Radio Energy" },
+ { 0x0ccd, 0x00b7, "Terratec Media Broadcast DAB Stick" },
+ { 0x0ccd, 0x00b8, "Terratec BR DAB Stick" },
+ { 0x0ccd, 0x00b9, "Terratec WDR DAB Stick" },
+ { 0x0ccd, 0x00c0, "Terratec MuellerVerlag DAB Stick" },
+ { 0x0ccd, 0x00c6, "Terratec Fraunhofer DAB Stick" },
+ { 0x0ccd, 0x00d3, "Terratec Cinergy T Stick RC (Rev.3)" },
+ { 0x0ccd, 0x00d7, "Terratec T Stick PLUS" },
+ { 0x0ccd, 0x00e0, "Terratec NOXON DAB/DAB+ USB dongle (rev 2)" },
+ { 0x1554, 0x5020, "PixelView PV-DT235U(RN)" },
+ { 0x15f4, 0x0131, "Astrometa DVB-T/DVB-T2" },
+ { 0x15f4, 0x0133, "HanfTek DAB+FM+DVB-T" },
+ { 0x185b, 0x0620, "Compro Videomate U620F"},
+ { 0x185b, 0x0650, "Compro Videomate U650F"},
+ { 0x185b, 0x0680, "Compro Videomate U680F"},
+ { 0x1b80, 0xd393, "GIGABYTE GT-U7300" },
+ { 0x1b80, 0xd394, "DIKOM USB-DVBT HD" },
+ { 0x1b80, 0xd395, "Peak 102569AGPK" },
+ { 0x1b80, 0xd397, "KWorld KW-UB450-T USB DVB-T Pico TV" },
+ { 0x1b80, 0xd398, "Zaapa ZT-MINDVBZP" },
+ { 0x1b80, 0xd39d, "SVEON STV20 DVB-T USB & FM" },
+ { 0x1b80, 0xd3a4, "Twintech UT-40" },
+ { 0x1b80, 0xd3a8, "ASUS U3100MINI_PLUS_V2" },
+ { 0x1b80, 0xd3af, "SVEON STV27 DVB-T USB & FM" },
+ { 0x1b80, 0xd3b0, "SVEON STV21 DVB-T USB & FM" },
+ { 0x1d19, 0x1101, "Dexatek DK DVB-T Dongle (Logilink VG0002A)" },
+ { 0x1d19, 0x1102, "Dexatek DK DVB-T Dongle (MSI DigiVox mini II V3.0)" },
+ { 0x1d19, 0x1103, "Dexatek Technology Ltd. DK 5217 DVB-T Dongle" },
+ { 0x1d19, 0x1104, "MSI DigiVox Micro HD" },
+ { 0x1f4d, 0xa803, "Sweex DVB-T USB" },
+ { 0x1f4d, 0xb803, "GTek T803" },
+ { 0x1f4d, 0xc803, "Lifeview LV5TDeluxe" },
+ { 0x1f4d, 0xd286, "MyGica TD312" },
+ { 0x1f4d, 0xd803, "PROlectrix DV107669" },
+};
+
+#define DEFAULT_BUF_NUMBER 15
+#define DEFAULT_BUF_LENGTH (16 * 32 * 512)
+
+#define DEF_RTL_XTAL_FREQ 28800000
+#define MIN_RTL_XTAL_FREQ (DEF_RTL_XTAL_FREQ - 1000)
+#define MAX_RTL_XTAL_FREQ (DEF_RTL_XTAL_FREQ + 1000)
+
+#define CTRL_IN (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN)
+#define CTRL_OUT (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT)
+#define CTRL_TIMEOUT 300
+#define BULK_TIMEOUT 0
+
+#define EEPROM_ADDR 0xa0
+
+enum usb_reg {
+ USB_SYSCTL = 0x2000,
+ USB_CTRL = 0x2010,
+ USB_STAT = 0x2014,
+ USB_EPA_CFG = 0x2144,
+ USB_EPA_CTL = 0x2148,
+ USB_EPA_MAXPKT = 0x2158,
+ USB_EPA_MAXPKT_2 = 0x215a,
+ USB_EPA_FIFO_CFG = 0x2160,
+};
+
+enum sys_reg {
+ DEMOD_CTL = 0x3000,
+ GPO = 0x3001,
+ GPI = 0x3002,
+ GPOE = 0x3003,
+ GPD = 0x3004,
+ SYSINTE = 0x3005,
+ SYSINTS = 0x3006,
+ GP_CFG0 = 0x3007,
+ GP_CFG1 = 0x3008,
+ SYSINTE_1 = 0x3009,
+ SYSINTS_1 = 0x300a,
+ DEMOD_CTL_1 = 0x300b,
+ IR_SUSPEND = 0x300c,
+};
+
+enum blocks {
+ DEMODB = 0,
+ USBB = 1,
+ SYSB = 2,
+ TUNB = 3,
+ ROMB = 4,
+ IRB = 5,
+ IICB = 6,
+};
+
+int rtlsdr_read_array(rtlsdr_dev_t *dev, uint8_t block, uint16_t addr, uint8_t *array, uint8_t len)
+{
+ int r;
+ uint16_t index = (block << 8);
+
+ r = libusb_control_transfer(dev->devh, CTRL_IN, 0, addr, index, array, len, CTRL_TIMEOUT);
+#if 0
+ if (r < 0)
+ fprintf(stderr, "%s failed with %d\n", __FUNCTION__, r);
+#endif
+ return r;
+}
+
+int rtlsdr_write_array(rtlsdr_dev_t *dev, uint8_t block, uint16_t addr, uint8_t *array, uint8_t len)
+{
+ int r;
+ uint16_t index = (block << 8) | 0x10;
+
+ r = libusb_control_transfer(dev->devh, CTRL_OUT, 0, addr, index, array, len, CTRL_TIMEOUT);
+#if 0
+ if (r < 0)
+ fprintf(stderr, "%s failed with %d\n", __FUNCTION__, r);
+#endif
+ return r;
+}
+
+int rtlsdr_i2c_write_reg(rtlsdr_dev_t *dev, uint8_t i2c_addr, uint8_t reg, uint8_t val)
+{
+ uint16_t addr = i2c_addr;
+ uint8_t data[2];
+
+ data[0] = reg;
+ data[1] = val;
+ return rtlsdr_write_array(dev, IICB, addr, (uint8_t *)&data, 2);
+}
+
+uint8_t rtlsdr_i2c_read_reg(rtlsdr_dev_t *dev, uint8_t i2c_addr, uint8_t reg)
+{
+ uint16_t addr = i2c_addr;
+ uint8_t data = 0;
+
+ rtlsdr_write_array(dev, IICB, addr, &reg, 1);
+ rtlsdr_read_array(dev, IICB, addr, &data, 1);
+
+ return data;
+}
+
+int rtlsdr_i2c_write(rtlsdr_dev_t *dev, uint8_t i2c_addr, uint8_t *buffer, int len)
+{
+ uint16_t addr = i2c_addr;
+
+ if (!dev)
+ return -1;
+
+ return rtlsdr_write_array(dev, IICB, addr, buffer, len);
+}
+
+int rtlsdr_i2c_read(rtlsdr_dev_t *dev, uint8_t i2c_addr, uint8_t *buffer, int len)
+{
+ uint16_t addr = i2c_addr;
+
+ if (!dev)
+ return -1;
+
+ return rtlsdr_read_array(dev, IICB, addr, buffer, len);
+}
+
+uint16_t rtlsdr_read_reg(rtlsdr_dev_t *dev, uint8_t block, uint16_t addr, uint8_t len)
+{
+ int r;
+ unsigned char data[2];
+ uint16_t index = (block << 8);
+ uint16_t reg;
+
+ r = libusb_control_transfer(dev->devh, CTRL_IN, 0, addr, index, data, len, CTRL_TIMEOUT);
+
+ if (r < 0)
+ fprintf(stderr, "%s failed with %d\n", __FUNCTION__, r);
+
+ reg = (data[1] << 8) | data[0];
+
+ return reg;
+}
+
+int rtlsdr_write_reg(rtlsdr_dev_t *dev, uint8_t block, uint16_t addr, uint16_t val, uint8_t len)
+{
+ int r;
+ unsigned char data[2];
+
+ uint16_t index = (block << 8) | 0x10;
+
+ if (len == 1)
+ data[0] = val & 0xff;
+ else
+ data[0] = val >> 8;
+
+ data[1] = val & 0xff;
+
+ r = libusb_control_transfer(dev->devh, CTRL_OUT, 0, addr, index, data, len, CTRL_TIMEOUT);
+
+ if (r < 0)
+ fprintf(stderr, "%s failed with %d\n", __FUNCTION__, r);
+
+ return r;
+}
+
+uint16_t rtlsdr_demod_read_reg(rtlsdr_dev_t *dev, uint8_t page, uint16_t addr, uint8_t len)
+{
+ int r;
+ unsigned char data[2];
+
+ uint16_t index = page;
+ uint16_t reg;
+ addr = (addr << 8) | 0x20;
+
+ r = libusb_control_transfer(dev->devh, CTRL_IN, 0, addr, index, data, len, CTRL_TIMEOUT);
+
+ if (r < 0)
+ fprintf(stderr, "%s failed with %d\n", __FUNCTION__, r);
+
+ reg = (data[1] << 8) | data[0];
+
+ return reg;
+}
+
+int rtlsdr_demod_write_reg(rtlsdr_dev_t *dev, uint8_t page, uint16_t addr, uint16_t val, uint8_t len)
+{
+ int r;
+ unsigned char data[2];
+ uint16_t index = 0x10 | page;
+ addr = (addr << 8) | 0x20;
+
+ if (len == 1)
+ data[0] = val & 0xff;
+ else
+ data[0] = val >> 8;
+
+ data[1] = val & 0xff;
+
+ r = libusb_control_transfer(dev->devh, CTRL_OUT, 0, addr, index, data, len, CTRL_TIMEOUT);
+
+ if (r < 0)
+ fprintf(stderr, "%s failed with %d\n", __FUNCTION__, r);
+
+ rtlsdr_demod_read_reg(dev, 0x0a, 0x01, 1);
+
+ return (r == len) ? 0 : -1;
+}
+
+void rtlsdr_set_gpio_bit(rtlsdr_dev_t *dev, uint8_t gpio, int val)
+{
+ uint16_t r;
+
+ gpio = 1 << gpio;
+ r = rtlsdr_read_reg(dev, SYSB, GPO, 1);
+ r = val ? (r | gpio) : (r & ~gpio);
+ rtlsdr_write_reg(dev, SYSB, GPO, r, 1);
+}
+
+void rtlsdr_set_gpio_output(rtlsdr_dev_t *dev, uint8_t gpio)
+{
+ int r;
+ gpio = 1 << gpio;
+
+ r = rtlsdr_read_reg(dev, SYSB, GPD, 1);
+ rtlsdr_write_reg(dev, SYSB, GPD, r & ~gpio, 1);
+ r = rtlsdr_read_reg(dev, SYSB, GPOE, 1);
+ rtlsdr_write_reg(dev, SYSB, GPOE, r | gpio, 1);
+}
+
+void rtlsdr_set_i2c_repeater(rtlsdr_dev_t *dev, int on)
+{
+ rtlsdr_demod_write_reg(dev, 1, 0x01, on ? 0x18 : 0x10, 1);
+}
+
+int rtlsdr_set_fir(rtlsdr_dev_t *dev)
+{
+ uint8_t fir[20];
+
+ int i;
+ /* format: int8_t[8] */
+ for (i = 0; i < 8; ++i) {
+ const int val = dev->fir[i];
+ if (val < -128 || val > 127) {
+ return -1;
+ }
+ fir[i] = val;
+ }
+ /* format: int12_t[8] */
+ for (i = 0; i < 8; i += 2) {
+ const int val0 = dev->fir[8+i];
+ const int val1 = dev->fir[8+i+1];
+ if (val0 < -2048 || val0 > 2047 || val1 < -2048 || val1 > 2047) {
+ return -1;
+ }
+ fir[8+i*3/2] = val0 >> 4;
+ fir[8+i*3/2+1] = (val0 << 4) | ((val1 >> 8) & 0x0f);
+ fir[8+i*3/2+2] = val1;
+ }
+
+ for (i = 0; i < (int)sizeof(fir); i++) {
+ if (rtlsdr_demod_write_reg(dev, 1, 0x1c + i, fir[i], 1))
+ return -1;
+ }
+
+ return 0;
+}
+
+void rtlsdr_init_baseband(rtlsdr_dev_t *dev)
+{
+ unsigned int i;
+
+ /* initialize USB */
+ rtlsdr_write_reg(dev, USBB, USB_SYSCTL, 0x09, 1);
+ rtlsdr_write_reg(dev, USBB, USB_EPA_MAXPKT, 0x0002, 2);
+ rtlsdr_write_reg(dev, USBB, USB_EPA_CTL, 0x1002, 2);
+
+ /* poweron demod */
+ rtlsdr_write_reg(dev, SYSB, DEMOD_CTL_1, 0x22, 1);
+ rtlsdr_write_reg(dev, SYSB, DEMOD_CTL, 0xe8, 1);
+
+ /* reset demod (bit 3, soft_rst) */
+ rtlsdr_demod_write_reg(dev, 1, 0x01, 0x14, 1);
+ rtlsdr_demod_write_reg(dev, 1, 0x01, 0x10, 1);
+
+ /* disable spectrum inversion and adjacent channel rejection */
+ rtlsdr_demod_write_reg(dev, 1, 0x15, 0x00, 1);
+ rtlsdr_demod_write_reg(dev, 1, 0x16, 0x0000, 2);
+
+ /* clear both DDC shift and IF frequency registers */
+ for (i = 0; i < 6; i++)
+ rtlsdr_demod_write_reg(dev, 1, 0x16 + i, 0x00, 1);
+
+ rtlsdr_set_fir(dev);
+
+ /* enable SDR mode, disable DAGC (bit 5) */
+ rtlsdr_demod_write_reg(dev, 0, 0x19, 0x05, 1);
+
+ /* init FSM state-holding register */
+ rtlsdr_demod_write_reg(dev, 1, 0x93, 0xf0, 1);
+ rtlsdr_demod_write_reg(dev, 1, 0x94, 0x0f, 1);
+
+ /* disable AGC (en_dagc, bit 0) (this seems to have no effect) */
+ rtlsdr_demod_write_reg(dev, 1, 0x11, 0x00, 1);
+
+ /* disable RF and IF AGC loop */
+ rtlsdr_demod_write_reg(dev, 1, 0x04, 0x00, 1);
+
+ /* disable PID filter (enable_PID = 0) */
+ rtlsdr_demod_write_reg(dev, 0, 0x61, 0x60, 1);
+
+ /* opt_adc_iq = 0, default ADC_I/ADC_Q datapath */
+ rtlsdr_demod_write_reg(dev, 0, 0x06, 0x80, 1);
+
+ /* Enable Zero-IF mode (en_bbin bit), DC cancellation (en_dc_est),
+ * IQ estimation/compensation (en_iq_comp, en_iq_est) */
+ rtlsdr_demod_write_reg(dev, 1, 0xb1, 0x1b, 1);
+
+ /* disable 4.096 MHz clock output on pin TP_CK0 */
+ rtlsdr_demod_write_reg(dev, 0, 0x0d, 0x83, 1);
+}
+
+int rtlsdr_deinit_baseband(rtlsdr_dev_t *dev)
+{
+ int r = 0;
+
+ if (!dev)
+ return -1;
+
+ if (dev->tuner && dev->tuner->exit) {
+ rtlsdr_set_i2c_repeater(dev, 1);
+ r = dev->tuner->exit(dev); /* deinitialize tuner */
+ rtlsdr_set_i2c_repeater(dev, 0);
+ }
+
+ /* poweroff demodulator and ADCs */
+ rtlsdr_write_reg(dev, SYSB, DEMOD_CTL, 0x20, 1);
+
+ return r;
+}
+
+static int rtlsdr_set_if_freq(rtlsdr_dev_t *dev, uint32_t freq)
+{
+ uint32_t rtl_xtal;
+ int32_t if_freq;
+ uint8_t tmp;
+ int r;
+
+ if (!dev)
+ return -1;
+
+ /* read corrected clock value */
+ if (rtlsdr_get_xtal_freq(dev, &rtl_xtal, NULL))
+ return -2;
+
+ if_freq = ((freq * TWO_POW(22)) / rtl_xtal) * (-1);
+
+ tmp = (if_freq >> 16) & 0x3f;
+ r = rtlsdr_demod_write_reg(dev, 1, 0x19, tmp, 1);
+ tmp = (if_freq >> 8) & 0xff;
+ r |= rtlsdr_demod_write_reg(dev, 1, 0x1a, tmp, 1);
+ tmp = if_freq & 0xff;
+ r |= rtlsdr_demod_write_reg(dev, 1, 0x1b, tmp, 1);
+
+ return r;
+}
+
+int rtlsdr_set_sample_freq_correction(rtlsdr_dev_t *dev, int ppm)
+{
+ int r = 0;
+ uint8_t tmp;
+ int16_t offs = ppm * (-1) * TWO_POW(24) / 1000000;
+
+ tmp = offs & 0xff;
+ r |= rtlsdr_demod_write_reg(dev, 1, 0x3f, tmp, 1);
+ tmp = (offs >> 8) & 0x3f;
+ r |= rtlsdr_demod_write_reg(dev, 1, 0x3e, tmp, 1);
+
+ return r;
+}
+
+int rtlsdr_set_xtal_freq(rtlsdr_dev_t *dev, uint32_t rtl_freq, uint32_t tuner_freq)
+{
+ int r = 0;
+
+ if (!dev)
+ return -1;
+
+ if (rtl_freq > 0 &&
+ (rtl_freq < MIN_RTL_XTAL_FREQ || rtl_freq > MAX_RTL_XTAL_FREQ))
+ return -2;
+
+ if (rtl_freq > 0 && dev->rtl_xtal != rtl_freq) {
+ dev->rtl_xtal = rtl_freq;
+
+ /* update xtal-dependent settings */
+ if (dev->rate)
+ r = rtlsdr_set_sample_rate(dev, dev->rate);
+ }
+
+ if (dev->tun_xtal != tuner_freq) {
+ if (0 == tuner_freq)
+ dev->tun_xtal = dev->rtl_xtal;
+ else
+ dev->tun_xtal = tuner_freq;
+
+ /* read corrected clock value into e4k and r82xx structure */
+ if (rtlsdr_get_xtal_freq(dev, NULL, &dev->e4k_s.vco.fosc) ||
+ rtlsdr_get_xtal_freq(dev, NULL, &dev->r82xx_c.xtal))
+ return -3;
+
+ /* update xtal-dependent settings */
+ if (dev->freq)
+ r = rtlsdr_set_center_freq(dev, dev->freq);
+ }
+
+ return r;
+}
+
+int rtlsdr_get_xtal_freq(rtlsdr_dev_t *dev, uint32_t *rtl_freq, uint32_t *tuner_freq)
+{
+ if (!dev)
+ return -1;
+
+ #define APPLY_PPM_CORR(val,ppm) (((val) * (1.0 + (ppm) / 1e6)))
+
+ if (rtl_freq)
+ *rtl_freq = (uint32_t) APPLY_PPM_CORR(dev->rtl_xtal, dev->corr);
+
+ if (tuner_freq)
+ *tuner_freq = (uint32_t) APPLY_PPM_CORR(dev->tun_xtal, dev->corr);
+
+ return 0;
+}
+
+int rtlsdr_get_usb_strings(rtlsdr_dev_t *dev, char *manufact, char *product,
+ char *serial)
+{
+ struct libusb_device_descriptor dd;
+ libusb_device *device = NULL;
+ const int buf_max = 256;
+ int r = 0;
+
+ if (!dev || !dev->devh)
+ return -1;
+
+ device = libusb_get_device(dev->devh);
+
+ r = libusb_get_device_descriptor(device, &dd);
+ if (r < 0)
+ return -1;
+
+ if (manufact) {
+ memset(manufact, 0, buf_max);
+ libusb_get_string_descriptor_ascii(dev->devh, dd.iManufacturer,
+ (unsigned char *)manufact,
+ buf_max);
+ }
+
+ if (product) {
+ memset(product, 0, buf_max);
+ libusb_get_string_descriptor_ascii(dev->devh, dd.iProduct,
+ (unsigned char *)product,
+ buf_max);
+ }
+
+ if (serial) {
+ memset(serial, 0, buf_max);
+ libusb_get_string_descriptor_ascii(dev->devh, dd.iSerialNumber,
+ (unsigned char *)serial,
+ buf_max);
+ }
+
+ return 0;
+}
+
+int rtlsdr_write_eeprom(rtlsdr_dev_t *dev, uint8_t *data, uint8_t offset, uint16_t len)
+{
+ int r = 0;
+ int i;
+ uint8_t cmd[2];
+
+ if (!dev)
+ return -1;
+
+ if ((len + offset) > 256)
+ return -2;
+
+ for (i = 0; i < len; i++) {
+ cmd[0] = i + offset;
+ r = rtlsdr_write_array(dev, IICB, EEPROM_ADDR, cmd, 1);
+ r = rtlsdr_read_array(dev, IICB, EEPROM_ADDR, &cmd[1], 1);
+
+ /* only write the byte if it differs */
+ if (cmd[1] == data[i])
+ continue;
+
+ cmd[1] = data[i];
+ r = rtlsdr_write_array(dev, IICB, EEPROM_ADDR, cmd, 2);
+ if (r != sizeof(cmd))
+ return -3;
+
+ /* for some EEPROMs (e.g. ATC 240LC02) we need a delay
+ * between write operations, otherwise they will fail */
+#ifdef _WIN32
+ Sleep(5);
+#else
+ usleep(5000);
+#endif
+ }
+
+ return 0;
+}
+
+int rtlsdr_read_eeprom(rtlsdr_dev_t *dev, uint8_t *data, uint8_t offset, uint16_t len)
+{
+ int r = 0;
+ int i;
+
+ if (!dev)
+ return -1;
+
+ if ((len + offset) > 256)
+ return -2;
+
+ r = rtlsdr_write_array(dev, IICB, EEPROM_ADDR, &offset, 1);
+ if (r < 0)
+ return -3;
+
+ for (i = 0; i < len; i++) {
+ r = rtlsdr_read_array(dev, IICB, EEPROM_ADDR, data + i, 1);
+
+ if (r < 0)
+ return -3;
+ }
+
+ return r;
+}
+
+int rtlsdr_set_center_freq(rtlsdr_dev_t *dev, uint32_t freq)
+{
+ int r = -1;
+
+ if (!dev || !dev->tuner)
+ return -1;
+
+ if (dev->direct_sampling) {
+ r = rtlsdr_set_if_freq(dev, freq);
+ } else if (dev->tuner && dev->tuner->set_freq) {
+ rtlsdr_set_i2c_repeater(dev, 1);
+ r = dev->tuner->set_freq(dev, freq - dev->offs_freq);
+ rtlsdr_set_i2c_repeater(dev, 0);
+ }
+
+ if (!r)
+ dev->freq = freq;
+ else
+ dev->freq = 0;
+
+ return r;
+}
+
+uint32_t rtlsdr_get_center_freq(rtlsdr_dev_t *dev)
+{
+ if (!dev)
+ return 0;
+
+ return dev->freq;
+}
+
+int rtlsdr_set_freq_correction(rtlsdr_dev_t *dev, int ppm)
+{
+ int r = 0;
+
+ if (!dev)
+ return -1;
+
+ if (dev->corr == ppm)
+ return -2;
+
+ dev->corr = ppm;
+
+ r |= rtlsdr_set_sample_freq_correction(dev, ppm);
+
+ /* read corrected clock value into e4k and r82xx structure */
+ if (rtlsdr_get_xtal_freq(dev, NULL, &dev->e4k_s.vco.fosc) ||
+ rtlsdr_get_xtal_freq(dev, NULL, &dev->r82xx_c.xtal))
+ return -3;
+
+ if (dev->freq) /* retune to apply new correction value */
+ r |= rtlsdr_set_center_freq(dev, dev->freq);
+
+ return r;
+}
+
+int rtlsdr_get_freq_correction(rtlsdr_dev_t *dev)
+{
+ if (!dev)
+ return 0;
+
+ return dev->corr;
+}
+
+enum rtlsdr_tuner rtlsdr_get_tuner_type(rtlsdr_dev_t *dev)
+{
+ if (!dev)
+ return RTLSDR_TUNER_UNKNOWN;
+
+ return dev->tuner_type;
+}
+
+int rtlsdr_get_tuner_gains(rtlsdr_dev_t *dev, int *gains)
+{
+ /* all gain values are expressed in tenths of a dB */
+ const int e4k_gains[] = { -10, 15, 40, 65, 90, 115, 140, 165, 190, 215,
+ 240, 290, 340, 420 };
+ const int fc0012_gains[] = { -99, -40, 71, 179, 192 };
+ const int fc0013_gains[] = { -99, -73, -65, -63, -60, -58, -54, 58, 61,
+ 63, 65, 67, 68, 70, 71, 179, 181, 182,
+ 184, 186, 188, 191, 197 };
+ const int fc2580_gains[] = { 0 /* no gain values */ };
+ const int r82xx_gains[] = { 0, 9, 14, 27, 37, 77, 87, 125, 144, 157,
+ 166, 197, 207, 229, 254, 280, 297, 328,
+ 338, 364, 372, 386, 402, 421, 434, 439,
+ 445, 480, 496 };
+ const int unknown_gains[] = { 0 /* no gain values */ };
+
+ const int *ptr = NULL;
+ int len = 0;
+
+ if (!dev)
+ return -1;
+
+ switch (dev->tuner_type) {
+ case RTLSDR_TUNER_E4000:
+ ptr = e4k_gains; len = sizeof(e4k_gains);
+ break;
+ case RTLSDR_TUNER_FC0012:
+ ptr = fc0012_gains; len = sizeof(fc0012_gains);
+ break;
+ case RTLSDR_TUNER_FC0013:
+ ptr = fc0013_gains; len = sizeof(fc0013_gains);
+ break;
+ case RTLSDR_TUNER_FC2580:
+ ptr = fc2580_gains; len = sizeof(fc2580_gains);
+ break;
+ case RTLSDR_TUNER_R820T:
+ case RTLSDR_TUNER_R828D:
+ ptr = r82xx_gains; len = sizeof(r82xx_gains);
+ break;
+ default:
+ ptr = unknown_gains; len = sizeof(unknown_gains);
+ break;
+ }
+
+ if (!gains) { /* no buffer provided, just return the count */
+ return len / sizeof(int);
+ } else {
+ if (len)
+ memcpy(gains, ptr, len);
+
+ return len / sizeof(int);
+ }
+}
+
+int rtlsdr_set_tuner_bandwidth(rtlsdr_dev_t *dev, uint32_t bw)
+{
+ int r = 0;
+
+ if (!dev || !dev->tuner)
+ return -1;
+
+ if (dev->tuner->set_bw) {
+ rtlsdr_set_i2c_repeater(dev, 1);
+ r = dev->tuner->set_bw(dev, bw > 0 ? bw : dev->rate);
+ rtlsdr_set_i2c_repeater(dev, 0);
+ if (r)
+ return r;
+ dev->bw = bw;
+ }
+ return r;
+}
+
+int rtlsdr_set_tuner_gain(rtlsdr_dev_t *dev, int gain)
+{
+ int r = 0;
+
+ if (!dev || !dev->tuner)
+ return -1;
+
+ if (dev->tuner->set_gain) {
+ rtlsdr_set_i2c_repeater(dev, 1);
+ r = dev->tuner->set_gain((void *)dev, gain);
+ rtlsdr_set_i2c_repeater(dev, 0);
+ }
+
+ if (!r)
+ dev->gain = gain;
+ else
+ dev->gain = 0;
+
+ return r;
+}
+
+int rtlsdr_get_tuner_gain(rtlsdr_dev_t *dev)
+{
+ if (!dev)
+ return 0;
+
+ return dev->gain;
+}
+
+int rtlsdr_set_tuner_if_gain(rtlsdr_dev_t *dev, int stage, int gain)
+{
+ int r = 0;
+
+ if (!dev || !dev->tuner)
+ return -1;
+
+ if (dev->tuner->set_if_gain) {
+ rtlsdr_set_i2c_repeater(dev, 1);
+ r = dev->tuner->set_if_gain(dev, stage, gain);
+ rtlsdr_set_i2c_repeater(dev, 0);
+ }
+
+ return r;
+}
+
+int rtlsdr_set_tuner_gain_mode(rtlsdr_dev_t *dev, int mode)
+{
+ int r = 0;
+
+ if (!dev || !dev->tuner)
+ return -1;
+
+ if (dev->tuner->set_gain_mode) {
+ rtlsdr_set_i2c_repeater(dev, 1);
+ r = dev->tuner->set_gain_mode((void *)dev, mode);
+ rtlsdr_set_i2c_repeater(dev, 0);
+ }
+
+ return r;
+}
+
+int rtlsdr_set_sample_rate(rtlsdr_dev_t *dev, uint32_t samp_rate)
+{
+ int r = 0;
+ uint16_t tmp;
+ uint32_t rsamp_ratio, real_rsamp_ratio;
+ double real_rate;
+
+ if (!dev)
+ return -1;
+
+ /* check if the rate is supported by the resampler */
+ if ((samp_rate <= 225000) || (samp_rate > 3200000) ||
+ ((samp_rate > 300000) && (samp_rate <= 900000))) {
+ fprintf(stderr, "Invalid sample rate: %u Hz\n", samp_rate);
+ return -EINVAL;
+ }
+
+ rsamp_ratio = (dev->rtl_xtal * TWO_POW(22)) / samp_rate;
+ rsamp_ratio &= 0x0ffffffc;
+
+ real_rsamp_ratio = rsamp_ratio | ((rsamp_ratio & 0x08000000) << 1);
+ real_rate = (dev->rtl_xtal * TWO_POW(22)) / real_rsamp_ratio;
+
+ if ( ((double)samp_rate) != real_rate )
+ fprintf(stderr, "Exact sample rate is: %f Hz\n", real_rate);
+
+ dev->rate = (uint32_t)real_rate;
+
+ if (dev->tuner && dev->tuner->set_bw) {
+ rtlsdr_set_i2c_repeater(dev, 1);
+ dev->tuner->set_bw(dev, dev->bw > 0 ? dev->bw : dev->rate);
+ rtlsdr_set_i2c_repeater(dev, 0);
+ }
+
+ tmp = (rsamp_ratio >> 16);
+ r |= rtlsdr_demod_write_reg(dev, 1, 0x9f, tmp, 2);
+ tmp = rsamp_ratio & 0xffff;
+ r |= rtlsdr_demod_write_reg(dev, 1, 0xa1, tmp, 2);
+
+ r |= rtlsdr_set_sample_freq_correction(dev, dev->corr);
+
+ /* reset demod (bit 3, soft_rst) */
+ r |= rtlsdr_demod_write_reg(dev, 1, 0x01, 0x14, 1);
+ r |= rtlsdr_demod_write_reg(dev, 1, 0x01, 0x10, 1);
+
+ /* recalculate offset frequency if offset tuning is enabled */
+ if (dev->offs_freq)
+ rtlsdr_set_offset_tuning(dev, 1);
+
+ return r;
+}
+
+uint32_t rtlsdr_get_sample_rate(rtlsdr_dev_t *dev)
+{
+ if (!dev)
+ return 0;
+
+ return dev->rate;
+}
+
+int rtlsdr_set_testmode(rtlsdr_dev_t *dev, int on)
+{
+ if (!dev)
+ return -1;
+
+ return rtlsdr_demod_write_reg(dev, 0, 0x19, on ? 0x03 : 0x05, 1);
+}
+
+int rtlsdr_set_agc_mode(rtlsdr_dev_t *dev, int on)
+{
+ if (!dev)
+ return -1;
+
+ return rtlsdr_demod_write_reg(dev, 0, 0x19, on ? 0x25 : 0x05, 1);
+}
+
+int rtlsdr_set_direct_sampling(rtlsdr_dev_t *dev, int on)
+{
+ int r = 0;
+
+ if (!dev)
+ return -1;
+
+ if (on) {
+ if (dev->tuner && dev->tuner->exit) {
+ rtlsdr_set_i2c_repeater(dev, 1);
+ r = dev->tuner->exit(dev);
+ rtlsdr_set_i2c_repeater(dev, 0);
+ }
+
+ /* disable Zero-IF mode */
+ r |= rtlsdr_demod_write_reg(dev, 1, 0xb1, 0x1a, 1);
+
+ /* disable spectrum inversion */
+ r |= rtlsdr_demod_write_reg(dev, 1, 0x15, 0x00, 1);
+
+ /* only enable In-phase ADC input */
+ r |= rtlsdr_demod_write_reg(dev, 0, 0x08, 0x4d, 1);
+
+ /* swap I and Q ADC, this allows to select between two inputs */
+ r |= rtlsdr_demod_write_reg(dev, 0, 0x06, (on > 1) ? 0x90 : 0x80, 1);
+
+ fprintf(stderr, "Enabled direct sampling mode, input %i\n", on);
+ dev->direct_sampling = on;
+ } else {
+ if (dev->tuner && dev->tuner->init) {
+ rtlsdr_set_i2c_repeater(dev, 1);
+ r |= dev->tuner->init(dev);
+ rtlsdr_set_i2c_repeater(dev, 0);
+ }
+
+ if ((dev->tuner_type == RTLSDR_TUNER_R820T) ||
+ (dev->tuner_type == RTLSDR_TUNER_R828D)) {
+ r |= rtlsdr_set_if_freq(dev, R82XX_IF_FREQ);
+
+ /* enable spectrum inversion */
+ r |= rtlsdr_demod_write_reg(dev, 1, 0x15, 0x01, 1);
+ } else {
+ r |= rtlsdr_set_if_freq(dev, 0);
+
+ /* enable In-phase + Quadrature ADC input */
+ r |= rtlsdr_demod_write_reg(dev, 0, 0x08, 0xcd, 1);
+
+ /* Enable Zero-IF mode */
+ r |= rtlsdr_demod_write_reg(dev, 1, 0xb1, 0x1b, 1);
+ }
+
+ /* opt_adc_iq = 0, default ADC_I/ADC_Q datapath */
+ r |= rtlsdr_demod_write_reg(dev, 0, 0x06, 0x80, 1);
+
+ fprintf(stderr, "Disabled direct sampling mode\n");
+ dev->direct_sampling = 0;
+ }
+
+ r |= rtlsdr_set_center_freq(dev, dev->freq);
+
+ return r;
+}
+
+int rtlsdr_get_direct_sampling(rtlsdr_dev_t *dev)
+{
+ if (!dev)
+ return -1;
+
+ return dev->direct_sampling;
+}
+
+int rtlsdr_set_offset_tuning(rtlsdr_dev_t *dev, int on)
+{
+ int r = 0;
+ int bw;
+
+ if (!dev)
+ return -1;
+
+ if ((dev->tuner_type == RTLSDR_TUNER_R820T) ||
+ (dev->tuner_type == RTLSDR_TUNER_R828D))
+ return -2;
+
+ if (dev->direct_sampling)
+ return -3;
+
+ /* based on keenerds 1/f noise measurements */
+ dev->offs_freq = on ? ((dev->rate / 2) * 170 / 100) : 0;
+ r |= rtlsdr_set_if_freq(dev, dev->offs_freq);
+
+ if (dev->tuner && dev->tuner->set_bw) {
+ rtlsdr_set_i2c_repeater(dev, 1);
+ if (on) {
+ bw = 2 * dev->offs_freq;
+ } else if (dev->bw > 0) {
+ bw = dev->bw;
+ } else {
+ bw = dev->rate;
+ }
+ dev->tuner->set_bw(dev, bw);
+ rtlsdr_set_i2c_repeater(dev, 0);
+ }
+
+ if (dev->freq > dev->offs_freq)
+ r |= rtlsdr_set_center_freq(dev, dev->freq);
+
+ return r;
+}
+
+int rtlsdr_get_offset_tuning(rtlsdr_dev_t *dev)
+{
+ if (!dev)
+ return -1;
+
+ return (dev->offs_freq) ? 1 : 0;
+}
+
+static rtlsdr_dongle_t *find_known_device(uint16_t vid, uint16_t pid)
+{
+ unsigned int i;
+ rtlsdr_dongle_t *device = NULL;
+
+ for (i = 0; i < sizeof(known_devices)/sizeof(rtlsdr_dongle_t); i++ ) {
+ if (known_devices[i].vid == vid && known_devices[i].pid == pid) {
+ device = &known_devices[i];
+ break;
+ }
+ }
+
+ return device;
+}
+
+uint32_t rtlsdr_get_device_count(void)
+{
+ int i,r;
+ libusb_context *ctx;
+ libusb_device **list;
+ uint32_t device_count = 0;
+ struct libusb_device_descriptor dd;
+ ssize_t cnt;
+
+ r = libusb_init(&ctx);
+ if(r < 0)
+ return 0;
+
+ cnt = libusb_get_device_list(ctx, &list);
+
+ for (i = 0; i < cnt; i++) {
+ libusb_get_device_descriptor(list[i], &dd);
+
+ if (find_known_device(dd.idVendor, dd.idProduct))
+ device_count++;
+ }
+
+ libusb_free_device_list(list, 1);
+
+ libusb_exit(ctx);
+
+ return device_count;
+}
+
+const char *rtlsdr_get_device_name(uint32_t index)
+{
+ int i,r;
+ libusb_context *ctx;
+ libusb_device **list;
+ struct libusb_device_descriptor dd;
+ rtlsdr_dongle_t *device = NULL;
+ uint32_t device_count = 0;
+ ssize_t cnt;
+
+ r = libusb_init(&ctx);
+ if(r < 0)
+ return "";
+
+ cnt = libusb_get_device_list(ctx, &list);
+
+ for (i = 0; i < cnt; i++) {
+ libusb_get_device_descriptor(list[i], &dd);
+
+ device = find_known_device(dd.idVendor, dd.idProduct);
+
+ if (device) {
+ device_count++;
+
+ if (index == device_count - 1)
+ break;
+ }
+ }
+
+ libusb_free_device_list(list, 1);
+
+ libusb_exit(ctx);
+
+ if (device)
+ return device->name;
+ else
+ return "";
+}
+
+int rtlsdr_get_device_usb_strings(uint32_t index, char *manufact,
+ char *product, char *serial)
+{
+ int r = -2;
+ int i;
+ libusb_context *ctx;
+ libusb_device **list;
+ struct libusb_device_descriptor dd;
+ rtlsdr_dongle_t *device = NULL;
+ rtlsdr_dev_t devt;
+ uint32_t device_count = 0;
+ ssize_t cnt;
+
+ r = libusb_init(&ctx);
+ if(r < 0)
+ return r;
+
+ cnt = libusb_get_device_list(ctx, &list);
+
+ for (i = 0; i < cnt; i++) {
+ libusb_get_device_descriptor(list[i], &dd);
+
+ device = find_known_device(dd.idVendor, dd.idProduct);
+
+ if (device) {
+ device_count++;
+
+ if (index == device_count - 1) {
+ r = libusb_open(list[i], &devt.devh);
+ if (!r) {
+ r = rtlsdr_get_usb_strings(&devt,
+ manufact,
+ product,
+ serial);
+ libusb_close(devt.devh);
+ }
+ break;
+ }
+ }
+ }
+
+ libusb_free_device_list(list, 1);
+
+ libusb_exit(ctx);
+
+ return r;
+}
+
+int rtlsdr_get_index_by_serial(const char *serial)
+{
+ int i, cnt, r;
+ char str[256];
+
+ if (!serial)
+ return -1;
+
+ cnt = rtlsdr_get_device_count();
+
+ if (!cnt)
+ return -2;
+
+ for (i = 0; i < cnt; i++) {
+ r = rtlsdr_get_device_usb_strings(i, NULL, NULL, str);
+ if (!r && !strcmp(serial, str))
+ return i;
+ }
+
+ return -3;
+}
+
+int rtlsdr_open(rtlsdr_dev_t **out_dev, uint32_t index)
+{
+ int r;
+ int i;
+ libusb_device **list;
+ rtlsdr_dev_t *dev = NULL;
+ libusb_device *device = NULL;
+ uint32_t device_count = 0;
+ struct libusb_device_descriptor dd;
+ uint8_t reg;
+ ssize_t cnt;
+
+ dev = malloc(sizeof(rtlsdr_dev_t));
+ if (NULL == dev)
+ return -ENOMEM;
+
+ memset(dev, 0, sizeof(rtlsdr_dev_t));
+ memcpy(dev->fir, fir_default, sizeof(fir_default));
+
+ r = libusb_init(&dev->ctx);
+ if(r < 0){
+ free(dev);
+ return -1;
+ }
+
+ dev->dev_lost = 1;
+
+ cnt = libusb_get_device_list(dev->ctx, &list);
+
+ for (i = 0; i < cnt; i++) {
+ device = list[i];
+
+ libusb_get_device_descriptor(list[i], &dd);
+
+ if (find_known_device(dd.idVendor, dd.idProduct)) {
+ device_count++;
+ }
+
+ if (index == device_count - 1)
+ break;
+
+ device = NULL;
+ }
+
+ if (!device) {
+ r = -1;
+ goto err;
+ }
+
+ r = libusb_open(device, &dev->devh);
+ if (r < 0) {
+ libusb_free_device_list(list, 1);
+ fprintf(stderr, "usb_open error %d\n", r);
+ if(r == LIBUSB_ERROR_ACCESS)
+ fprintf(stderr, "Please fix the device permissions, e.g. "
+ "by installing the udev rules file rtl-sdr.rules\n");
+ goto err;
+ }
+
+ libusb_free_device_list(list, 1);
+
+ if (libusb_kernel_driver_active(dev->devh, 0) == 1) {
+ dev->driver_active = 1;
+
+#ifdef DETACH_KERNEL_DRIVER
+ if (!libusb_detach_kernel_driver(dev->devh, 0)) {
+ fprintf(stderr, "Detached kernel driver\n");
+ } else {
+ fprintf(stderr, "Detaching kernel driver failed!");
+ goto err;
+ }
+#else
+ fprintf(stderr, "\nKernel driver is active, or device is "
+ "claimed by second instance of librtlsdr."
+ "\nIn the first case, please either detach"
+ " or blacklist the kernel module\n"
+ "(dvb_usb_rtl28xxu), or enable automatic"
+ " detaching at compile time.\n\n");
+#endif
+ }
+
+ r = libusb_claim_interface(dev->devh, 0);
+ if (r < 0) {
+ fprintf(stderr, "usb_claim_interface error %d\n", r);
+ goto err;
+ }
+
+ dev->rtl_xtal = DEF_RTL_XTAL_FREQ;
+
+ /* perform a dummy write, if it fails, reset the device */
+ if (rtlsdr_write_reg(dev, USBB, USB_SYSCTL, 0x09, 1) < 0) {
+ fprintf(stderr, "Resetting device...\n");
+ libusb_reset_device(dev->devh);
+ }
+
+ rtlsdr_init_baseband(dev);
+ dev->dev_lost = 0;
+
+ /* Probe tuners */
+ rtlsdr_set_i2c_repeater(dev, 1);
+
+ reg = rtlsdr_i2c_read_reg(dev, E4K_I2C_ADDR, E4K_CHECK_ADDR);
+ if (reg == E4K_CHECK_VAL) {
+ fprintf(stderr, "Found Elonics E4000 tuner\n");
+ dev->tuner_type = RTLSDR_TUNER_E4000;
+ goto found;
+ }
+
+ reg = rtlsdr_i2c_read_reg(dev, FC0013_I2C_ADDR, FC0013_CHECK_ADDR);
+ if (reg == FC0013_CHECK_VAL) {
+ fprintf(stderr, "Found Fitipower FC0013 tuner\n");
+ dev->tuner_type = RTLSDR_TUNER_FC0013;
+ goto found;
+ }
+
+ reg = rtlsdr_i2c_read_reg(dev, R820T_I2C_ADDR, R82XX_CHECK_ADDR);
+ if (reg == R82XX_CHECK_VAL) {
+ fprintf(stderr, "Found Rafael Micro R820T tuner\n");
+ dev->tuner_type = RTLSDR_TUNER_R820T;
+ goto found;
+ }
+
+ reg = rtlsdr_i2c_read_reg(dev, R828D_I2C_ADDR, R82XX_CHECK_ADDR);
+ if (reg == R82XX_CHECK_VAL) {
+ fprintf(stderr, "Found Rafael Micro R828D tuner\n");
+ dev->tuner_type = RTLSDR_TUNER_R828D;
+ goto found;
+ }
+
+ /* initialise GPIOs */
+ rtlsdr_set_gpio_output(dev, 4);
+
+ /* reset tuner before probing */
+ rtlsdr_set_gpio_bit(dev, 4, 1);
+ rtlsdr_set_gpio_bit(dev, 4, 0);
+
+ reg = rtlsdr_i2c_read_reg(dev, FC2580_I2C_ADDR, FC2580_CHECK_ADDR);
+ if ((reg & 0x7f) == FC2580_CHECK_VAL) {
+ fprintf(stderr, "Found FCI 2580 tuner\n");
+ dev->tuner_type = RTLSDR_TUNER_FC2580;
+ goto found;
+ }
+
+ reg = rtlsdr_i2c_read_reg(dev, FC0012_I2C_ADDR, FC0012_CHECK_ADDR);
+ if (reg == FC0012_CHECK_VAL) {
+ fprintf(stderr, "Found Fitipower FC0012 tuner\n");
+ rtlsdr_set_gpio_output(dev, 6);
+ dev->tuner_type = RTLSDR_TUNER_FC0012;
+ goto found;
+ }
+
+found:
+ /* use the rtl clock value by default */
+ dev->tun_xtal = dev->rtl_xtal;
+ dev->tuner = &tuners[dev->tuner_type];
+
+ switch (dev->tuner_type) {
+ case RTLSDR_TUNER_R828D:
+ dev->tun_xtal = R828D_XTAL_FREQ;
+ /* fall-through */
+ case RTLSDR_TUNER_R820T:
+ /* disable Zero-IF mode */
+ rtlsdr_demod_write_reg(dev, 1, 0xb1, 0x1a, 1);
+
+ /* only enable In-phase ADC input */
+ rtlsdr_demod_write_reg(dev, 0, 0x08, 0x4d, 1);
+
+ /* the R82XX use 3.57 MHz IF for the DVB-T 6 MHz mode, and
+ * 4.57 MHz for the 8 MHz mode */
+ rtlsdr_set_if_freq(dev, R82XX_IF_FREQ);
+
+ /* enable spectrum inversion */
+ rtlsdr_demod_write_reg(dev, 1, 0x15, 0x01, 1);
+ break;
+ case RTLSDR_TUNER_UNKNOWN:
+ fprintf(stderr, "No supported tuner found\n");
+ rtlsdr_set_direct_sampling(dev, 1);
+ break;
+ default:
+ break;
+ }
+
+ if (dev->tuner->init)
+ r = dev->tuner->init(dev);
+
+ rtlsdr_set_i2c_repeater(dev, 0);
+
+ *out_dev = dev;
+
+ return 0;
+err:
+ if (dev) {
+ if (dev->devh)
+ libusb_close(dev->devh);
+
+ if (dev->ctx)
+ libusb_exit(dev->ctx);
+
+ free(dev);
+ }
+
+ return r;
+}
+
+int rtlsdr_close(rtlsdr_dev_t *dev)
+{
+ if (!dev)
+ return -1;
+
+ if(!dev->dev_lost) {
+ /* block until all async operations have been completed (if any) */
+ while (RTLSDR_INACTIVE != dev->async_status) {
+#ifdef _WIN32
+ Sleep(1);
+#else
+ usleep(1000);
+#endif
+ }
+
+ rtlsdr_deinit_baseband(dev);
+ }
+
+ libusb_release_interface(dev->devh, 0);
+
+#ifdef DETACH_KERNEL_DRIVER
+ if (dev->driver_active) {
+ if (!libusb_attach_kernel_driver(dev->devh, 0))
+ fprintf(stderr, "Reattached kernel driver\n");
+ else
+ fprintf(stderr, "Reattaching kernel driver failed!\n");
+ }
+#endif
+
+ libusb_close(dev->devh);
+
+ libusb_exit(dev->ctx);
+
+ free(dev);
+
+ return 0;
+}
+
+int rtlsdr_reset_buffer(rtlsdr_dev_t *dev)
+{
+ if (!dev)
+ return -1;
+
+ rtlsdr_write_reg(dev, USBB, USB_EPA_CTL, 0x1002, 2);
+ rtlsdr_write_reg(dev, USBB, USB_EPA_CTL, 0x0000, 2);
+
+ return 0;
+}
+
+int rtlsdr_read_sync(rtlsdr_dev_t *dev, void *buf, int len, int *n_read)
+{
+ if (!dev)
+ return -1;
+
+ return libusb_bulk_transfer(dev->devh, 0x81, buf, len, n_read, BULK_TIMEOUT);
+}
+
+static void LIBUSB_CALL _libusb_callback(struct libusb_transfer *xfer)
+{
+ rtlsdr_dev_t *dev = (rtlsdr_dev_t *)xfer->user_data;
+
+ if (LIBUSB_TRANSFER_COMPLETED == xfer->status) {
+ if (dev->cb)
+ dev->cb(xfer->buffer, xfer->actual_length, dev->cb_ctx);
+
+ libusb_submit_transfer(xfer); /* resubmit transfer */
+ dev->xfer_errors = 0;
+ } else if (LIBUSB_TRANSFER_CANCELLED != xfer->status) {
+#ifndef _WIN32
+ if (LIBUSB_TRANSFER_ERROR == xfer->status)
+ dev->xfer_errors++;
+
+ if (dev->xfer_errors >= dev->xfer_buf_num ||
+ LIBUSB_TRANSFER_NO_DEVICE == xfer->status) {
+#endif
+ dev->dev_lost = 1;
+ rtlsdr_cancel_async(dev);
+ fprintf(stderr, "cb transfer status: %d, "
+ "canceling...\n", xfer->status);
+#ifndef _WIN32
+ }
+#endif
+ }
+}
+
+int rtlsdr_wait_async(rtlsdr_dev_t *dev, rtlsdr_read_async_cb_t cb, void *ctx)
+{
+ return rtlsdr_read_async(dev, cb, ctx, 0, 0);
+}
+
+static int _rtlsdr_alloc_async_buffers(rtlsdr_dev_t *dev)
+{
+ unsigned int i;
+
+ if (!dev)
+ return -1;
+
+ if (!dev->xfer) {
+ dev->xfer = malloc(dev->xfer_buf_num *
+ sizeof(struct libusb_transfer *));
+
+ for(i = 0; i < dev->xfer_buf_num; ++i)
+ dev->xfer[i] = libusb_alloc_transfer(0);
+ }
+
+ if (dev->xfer_buf)
+ return -2;
+
+ dev->xfer_buf = malloc(dev->xfer_buf_num * sizeof(unsigned char *));
+ memset(dev->xfer_buf, 0, dev->xfer_buf_num * sizeof(unsigned char *));
+
+#if defined(ENABLE_ZEROCOPY) && defined (__linux__) && LIBUSB_API_VERSION >= 0x01000105
+ fprintf(stderr, "Allocating %d zero-copy buffers\n", dev->xfer_buf_num);
+
+ dev->use_zerocopy = 1;
+ for (i = 0; i < dev->xfer_buf_num; ++i) {
+ dev->xfer_buf[i] = libusb_dev_mem_alloc(dev->devh, dev->xfer_buf_len);
+
+ if (dev->xfer_buf[i]) {
+ /* Check if Kernel usbfs mmap() bug is present: if the
+ * mapping is correct, the buffers point to memory that
+ * was memset to 0 by the Kernel, otherwise, they point
+ * to random memory. We check if the buffers are zeroed
+ * and otherwise fall back to buffers in userspace.
+ */
+ if (dev->xfer_buf[i][0] || memcmp(dev->xfer_buf[i],
+ dev->xfer_buf[i] + 1,
+ dev->xfer_buf_len - 1)) {
+ fprintf(stderr, "Detected Kernel usbfs mmap() "
+ "bug, falling back to buffers "
+ "in userspace\n");
+ dev->use_zerocopy = 0;
+ break;
+ }
+ } else {
+ fprintf(stderr, "Failed to allocate zero-copy "
+ "buffer for transfer %d\nFalling "
+ "back to buffers in userspace\n", i);
+ dev->use_zerocopy = 0;
+ break;
+ }
+ }
+
+ /* zero-copy buffer allocation failed (partially or completely)
+ * we need to free the buffers again if already allocated */
+ if (!dev->use_zerocopy) {
+ for (i = 0; i < dev->xfer_buf_num; ++i) {
+ if (dev->xfer_buf[i])
+ libusb_dev_mem_free(dev->devh,
+ dev->xfer_buf[i],
+ dev->xfer_buf_len);
+ }
+ }
+#endif
+
+ /* no zero-copy available, allocate buffers in userspace */
+ if (!dev->use_zerocopy) {
+ for (i = 0; i < dev->xfer_buf_num; ++i) {
+ dev->xfer_buf[i] = malloc(dev->xfer_buf_len);
+
+ if (!dev->xfer_buf[i])
+ return -ENOMEM;
+ }
+ }
+
+ return 0;
+}
+
+static int _rtlsdr_free_async_buffers(rtlsdr_dev_t *dev)
+{
+ unsigned int i;
+
+ if (!dev)
+ return -1;
+
+ if (dev->xfer) {
+ for(i = 0; i < dev->xfer_buf_num; ++i) {
+ if (dev->xfer[i]) {
+ libusb_free_transfer(dev->xfer[i]);
+ }
+ }
+
+ free(dev->xfer);
+ dev->xfer = NULL;
+ }
+
+ if (dev->xfer_buf) {
+ for (i = 0; i < dev->xfer_buf_num; ++i) {
+ if (dev->xfer_buf[i]) {
+ if (dev->use_zerocopy) {
+#if defined (__linux__) && LIBUSB_API_VERSION >= 0x01000105
+ libusb_dev_mem_free(dev->devh,
+ dev->xfer_buf[i],
+ dev->xfer_buf_len);
+#endif
+ } else {
+ free(dev->xfer_buf[i]);
+ }
+ }
+ }
+
+ free(dev->xfer_buf);
+ dev->xfer_buf = NULL;
+ }
+
+ return 0;
+}
+
+int rtlsdr_read_async(rtlsdr_dev_t *dev, rtlsdr_read_async_cb_t cb, void *ctx,
+ uint32_t buf_num, uint32_t buf_len)
+{
+ unsigned int i;
+ int r = 0;
+ struct timeval tv = { 1, 0 };
+ struct timeval zerotv = { 0, 0 };
+ enum rtlsdr_async_status next_status = RTLSDR_INACTIVE;
+
+ if (!dev)
+ return -1;
+
+ if (RTLSDR_INACTIVE != dev->async_status)
+ return -2;
+
+ dev->async_status = RTLSDR_RUNNING;
+ dev->async_cancel = 0;
+
+ dev->cb = cb;
+ dev->cb_ctx = ctx;
+
+ if (buf_num > 0)
+ dev->xfer_buf_num = buf_num;
+ else
+ dev->xfer_buf_num = DEFAULT_BUF_NUMBER;
+
+ if (buf_len > 0 && buf_len % 512 == 0) /* len must be multiple of 512 */
+ dev->xfer_buf_len = buf_len;
+ else
+ dev->xfer_buf_len = DEFAULT_BUF_LENGTH;
+
+ _rtlsdr_alloc_async_buffers(dev);
+
+ for(i = 0; i < dev->xfer_buf_num; ++i) {
+ libusb_fill_bulk_transfer(dev->xfer[i],
+ dev->devh,
+ 0x81,
+ dev->xfer_buf[i],
+ dev->xfer_buf_len,
+ _libusb_callback,
+ (void *)dev,
+ BULK_TIMEOUT);
+
+ r = libusb_submit_transfer(dev->xfer[i]);
+ if (r < 0) {
+ fprintf(stderr, "Failed to submit transfer %i\n"
+ "Please increase your allowed "
+ "usbfs buffer size with the "
+ "following command:\n"
+ "echo 0 > /sys/module/usbcore"
+ "/parameters/usbfs_memory_mb\n", i);
+ dev->async_status = RTLSDR_CANCELING;
+ break;
+ }
+ }
+
+ while (RTLSDR_INACTIVE != dev->async_status) {
+ r = libusb_handle_events_timeout_completed(dev->ctx, &tv,
+ &dev->async_cancel);
+ if (r < 0) {
+ /*fprintf(stderr, "handle_events returned: %d\n", r);*/
+ if (r == LIBUSB_ERROR_INTERRUPTED) /* stray signal */
+ continue;
+ break;
+ }
+
+ if (RTLSDR_CANCELING == dev->async_status) {
+ next_status = RTLSDR_INACTIVE;
+
+ if (!dev->xfer)
+ break;
+
+ for(i = 0; i < dev->xfer_buf_num; ++i) {
+ if (!dev->xfer[i])
+ continue;
+
+ if (LIBUSB_TRANSFER_CANCELLED !=
+ dev->xfer[i]->status) {
+ r = libusb_cancel_transfer(dev->xfer[i]);
+ /* handle events after canceling
+ * to allow transfer status to
+ * propagate */
+#ifdef _WIN32
+ Sleep(1);
+#endif
+ libusb_handle_events_timeout_completed(dev->ctx,
+ &zerotv, NULL);
+ if (r < 0)
+ continue;
+
+ next_status = RTLSDR_CANCELING;
+ }
+ }
+
+ if (dev->dev_lost || RTLSDR_INACTIVE == next_status) {
+ /* handle any events that still need to
+ * be handled before exiting after we
+ * just cancelled all transfers */
+ libusb_handle_events_timeout_completed(dev->ctx,
+ &zerotv, NULL);
+ break;
+ }
+ }
+ }
+
+ _rtlsdr_free_async_buffers(dev);
+
+ dev->async_status = next_status;
+
+ return r;
+}
+
+int rtlsdr_cancel_async(rtlsdr_dev_t *dev)
+{
+ if (!dev)
+ return -1;
+
+ /* if streaming, try to cancel gracefully */
+ if (RTLSDR_RUNNING == dev->async_status) {
+ dev->async_status = RTLSDR_CANCELING;
+ dev->async_cancel = 1;
+ return 0;
+ }
+
+ /* if called while in pending state, change the state forcefully */
+#if 0
+ if (RTLSDR_INACTIVE != dev->async_status) {
+ dev->async_status = RTLSDR_INACTIVE;
+ return 0;
+ }
+#endif
+ return -2;
+}
+
+uint32_t rtlsdr_get_tuner_clock(void *dev)
+{
+ uint32_t tuner_freq;
+
+ if (!dev)
+ return 0;
+
+ /* read corrected clock value */
+ if (rtlsdr_get_xtal_freq((rtlsdr_dev_t *)dev, NULL, &tuner_freq))
+ return 0;
+
+ return tuner_freq;
+}
+
+int rtlsdr_i2c_write_fn(void *dev, uint8_t addr, uint8_t *buf, int len)
+{
+ if (dev)
+ return rtlsdr_i2c_write(((rtlsdr_dev_t *)dev), addr, buf, len);
+
+ return -1;
+}
+
+int rtlsdr_i2c_read_fn(void *dev, uint8_t addr, uint8_t *buf, int len)
+{
+ if (dev)
+ return rtlsdr_i2c_read(((rtlsdr_dev_t *)dev), addr, buf, len);
+
+ return -1;
+}
+
+int rtlsdr_set_bias_tee_gpio(rtlsdr_dev_t *dev, int gpio, int on)
+{
+ if (!dev)
+ return -1;
+
+ rtlsdr_set_gpio_output(dev, gpio);
+ rtlsdr_set_gpio_bit(dev, gpio, on);
+
+ return 0;
+}
+
+int rtlsdr_set_bias_tee(rtlsdr_dev_t *dev, int on)
+{
+ return rtlsdr_set_bias_tee_gpio(dev, 0, on);
+}
diff --git a/hardware/src/r820/src/r820sdr-Bridging-Header.h b/hardware/src/r820/src/r820sdr-Bridging-Header.h
new file mode 100644
index 0000000..fd7a194
--- /dev/null
+++ b/hardware/src/r820/src/r820sdr-Bridging-Header.h
@@ -0,0 +1,5 @@
+//
+// Use this file to import your target's public headers that you would like to expose to Swift.
+//
+
+#include "../include/rtl-sdr.h"
diff --git a/hardware/src/r820/src/tuner_e4k.c b/hardware/src/r820/src/tuner_e4k.c
new file mode 100644
index 0000000..e4fb11e
--- /dev/null
+++ b/hardware/src/r820/src/tuner_e4k.c
@@ -0,0 +1,1000 @@
+/*
+ * Elonics E4000 tuner driver
+ *
+ * (C) 2011-2012 by Harald Welte <laforge@gnumonks.org>
+ * (C) 2012 by Sylvain Munaut <tnt@246tNt.com>
+ * (C) 2012 by Hoernchen <la@tfc-server.de>
+ *
+ * All Rights Reserved
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <limits.h>
+#include <stdint.h>
+#include <errno.h>
+#include <string.h>
+#include <stdio.h>
+
+#include <reg_field.h>
+#include <tuner_e4k.h>
+#include <rtlsdr_i2c.h>
+
+#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
+
+/* If this is defined, the limits are somewhat relaxed compared to what the
+ * vendor claims is possible */
+#define OUT_OF_SPEC
+
+#define MHZ(x) ((x)*1000*1000)
+#define KHZ(x) ((x)*1000)
+
+uint32_t unsigned_delta(uint32_t a, uint32_t b)
+{
+ if (a > b)
+ return a - b;
+ else
+ return b - a;
+}
+
+/* look-up table bit-width -> mask */
+static const uint8_t width2mask[] = {
+ 0, 1, 3, 7, 0xf, 0x1f, 0x3f, 0x7f, 0xff
+};
+
+/***********************************************************************
+ * Register Access */
+
+/*! \brief Write a register of the tuner chip
+ * \param[in] e4k reference to the tuner
+ * \param[in] reg number of the register
+ * \param[in] val value to be written
+ * \returns 0 on success, negative in case of error
+ */
+static int e4k_reg_write(struct e4k_state *e4k, uint8_t reg, uint8_t val)
+{
+ int r;
+ uint8_t data[2];
+ data[0] = reg;
+ data[1] = val;
+
+ r = rtlsdr_i2c_write_fn(e4k->rtl_dev, e4k->i2c_addr, data, 2);
+ return r == 2 ? 0 : -1;
+}
+
+/*! \brief Read a register of the tuner chip
+ * \param[in] e4k reference to the tuner
+ * \param[in] reg number of the register
+ * \returns positive 8bit register contents on success, negative in case of error
+ */
+static int e4k_reg_read(struct e4k_state *e4k, uint8_t reg)
+{
+ uint8_t data = reg;
+
+ if (rtlsdr_i2c_write_fn(e4k->rtl_dev, e4k->i2c_addr, &data, 1) < 1)
+ return -1;
+
+ if (rtlsdr_i2c_read_fn(e4k->rtl_dev, e4k->i2c_addr, &data, 1) < 1)
+ return -1;
+
+ return data;
+}
+
+/*! \brief Set or clear some (masked) bits inside a register
+ * \param[in] e4k reference to the tuner
+ * \param[in] reg number of the register
+ * \param[in] mask bit-mask of the value
+ * \param[in] val data value to be written to register
+ * \returns 0 on success, negative in case of error
+ */
+static int e4k_reg_set_mask(struct e4k_state *e4k, uint8_t reg,
+ uint8_t mask, uint8_t val)
+{
+ uint8_t tmp = e4k_reg_read(e4k, reg);
+
+ if ((tmp & mask) == val)
+ return 0;
+
+ return e4k_reg_write(e4k, reg, (tmp & ~mask) | (val & mask));
+}
+
+/*! \brief Write a given field inside a register
+ * \param[in] e4k reference to the tuner
+ * \param[in] field structure describing the field
+ * \param[in] val value to be written
+ * \returns 0 on success, negative in case of error
+ */
+static int e4k_field_write(struct e4k_state *e4k, const struct reg_field *field, uint8_t val)
+{
+ int rc;
+ uint8_t mask;
+
+ rc = e4k_reg_read(e4k, field->reg);
+ if (rc < 0)
+ return rc;
+
+ mask = width2mask[field->width] << field->shift;
+
+ return e4k_reg_set_mask(e4k, field->reg, mask, val << field->shift);
+}
+
+/*! \brief Read a given field inside a register
+ * \param[in] e4k reference to the tuner
+ * \param[in] field structure describing the field
+ * \returns positive value of the field, negative in case of error
+ */
+static int e4k_field_read(struct e4k_state *e4k, const struct reg_field *field)
+{
+ int rc;
+
+ rc = e4k_reg_read(e4k, field->reg);
+ if (rc < 0)
+ return rc;
+
+ rc = (rc >> field->shift) & width2mask[field->width];
+
+ return rc;
+}
+
+/***********************************************************************
+ * Filter Control */
+
+static const uint32_t rf_filt_center_uhf[] = {
+ MHZ(360), MHZ(380), MHZ(405), MHZ(425),
+ MHZ(450), MHZ(475), MHZ(505), MHZ(540),
+ MHZ(575), MHZ(615), MHZ(670), MHZ(720),
+ MHZ(760), MHZ(840), MHZ(890), MHZ(970)
+};
+
+static const uint32_t rf_filt_center_l[] = {
+ MHZ(1300), MHZ(1320), MHZ(1360), MHZ(1410),
+ MHZ(1445), MHZ(1460), MHZ(1490), MHZ(1530),
+ MHZ(1560), MHZ(1590), MHZ(1640), MHZ(1660),
+ MHZ(1680), MHZ(1700), MHZ(1720), MHZ(1750)
+};
+
+static int closest_arr_idx(const uint32_t *arr, unsigned int arr_size, uint32_t freq)
+{
+ unsigned int i, bi = 0;
+ uint32_t best_delta = 0xffffffff;
+
+ /* iterate over the array containing a list of the center
+ * frequencies, selecting the closest one */
+ for (i = 0; i < arr_size; i++) {
+ uint32_t delta = unsigned_delta(freq, arr[i]);
+ if (delta < best_delta) {
+ best_delta = delta;
+ bi = i;
+ }
+ }
+
+ return bi;
+}
+
+/* return 4-bit index as to which RF filter to select */
+static int choose_rf_filter(enum e4k_band band, uint32_t freq)
+{
+ int rc;
+
+ switch (band) {
+ case E4K_BAND_VHF2:
+ case E4K_BAND_VHF3:
+ rc = 0;
+ break;
+ case E4K_BAND_UHF:
+ rc = closest_arr_idx(rf_filt_center_uhf,
+ ARRAY_SIZE(rf_filt_center_uhf),
+ freq);
+ break;
+ case E4K_BAND_L:
+ rc = closest_arr_idx(rf_filt_center_l,
+ ARRAY_SIZE(rf_filt_center_l),
+ freq);
+ break;
+ default:
+ rc = -EINVAL;
+ break;
+ }
+
+ return rc;
+}
+
+/* \brief Automatically select apropriate RF filter based on e4k state */
+int e4k_rf_filter_set(struct e4k_state *e4k)
+{
+ int rc;
+
+ rc = choose_rf_filter(e4k->band, e4k->vco.flo);
+ if (rc < 0)
+ return rc;
+
+ return e4k_reg_set_mask(e4k, E4K_REG_FILT1, 0xF, rc);
+}
+
+/* Mixer Filter */
+static const uint32_t mix_filter_bw[] = {
+ KHZ(27000), KHZ(27000), KHZ(27000), KHZ(27000),
+ KHZ(27000), KHZ(27000), KHZ(27000), KHZ(27000),
+ KHZ(4600), KHZ(4200), KHZ(3800), KHZ(3400),
+ KHZ(3300), KHZ(2700), KHZ(2300), KHZ(1900)
+};
+
+/* IF RC Filter */
+static const uint32_t ifrc_filter_bw[] = {
+ KHZ(21400), KHZ(21000), KHZ(17600), KHZ(14700),
+ KHZ(12400), KHZ(10600), KHZ(9000), KHZ(7700),
+ KHZ(6400), KHZ(5300), KHZ(4400), KHZ(3400),
+ KHZ(2600), KHZ(1800), KHZ(1200), KHZ(1000)
+};
+
+/* IF Channel Filter */
+static const uint32_t ifch_filter_bw[] = {
+ KHZ(5500), KHZ(5300), KHZ(5000), KHZ(4800),
+ KHZ(4600), KHZ(4400), KHZ(4300), KHZ(4100),
+ KHZ(3900), KHZ(3800), KHZ(3700), KHZ(3600),
+ KHZ(3400), KHZ(3300), KHZ(3200), KHZ(3100),
+ KHZ(3000), KHZ(2950), KHZ(2900), KHZ(2800),
+ KHZ(2750), KHZ(2700), KHZ(2600), KHZ(2550),
+ KHZ(2500), KHZ(2450), KHZ(2400), KHZ(2300),
+ KHZ(2280), KHZ(2240), KHZ(2200), KHZ(2150)
+};
+
+static const uint32_t *if_filter_bw[] = {
+ mix_filter_bw,
+ ifch_filter_bw,
+ ifrc_filter_bw,
+};
+
+static const uint32_t if_filter_bw_len[] = {
+ ARRAY_SIZE(mix_filter_bw),
+ ARRAY_SIZE(ifch_filter_bw),
+ ARRAY_SIZE(ifrc_filter_bw),
+};
+
+static const struct reg_field if_filter_fields[] = {
+ {
+ E4K_REG_FILT2, 4, 4,
+ },
+ {
+ E4K_REG_FILT3, 0, 5,
+ },
+ {
+ E4K_REG_FILT2, 0, 4,
+ }
+};
+
+static int find_if_bw(enum e4k_if_filter filter, uint32_t bw)
+{
+ if (filter >= ARRAY_SIZE(if_filter_bw))
+ return -EINVAL;
+
+ return closest_arr_idx(if_filter_bw[filter],
+ if_filter_bw_len[filter], bw);
+}
+
+/*! \brief Set the filter band-width of any of the IF filters
+ * \param[in] e4k reference to the tuner chip
+ * \param[in] filter filter to be configured
+ * \param[in] bandwidth bandwidth to be configured
+ * \returns positive actual filter band-width, negative in case of error
+ */
+int e4k_if_filter_bw_set(struct e4k_state *e4k, enum e4k_if_filter filter,
+ uint32_t bandwidth)
+{
+ int bw_idx;
+ const struct reg_field *field;
+
+ if (filter >= ARRAY_SIZE(if_filter_bw))
+ return -EINVAL;
+
+ bw_idx = find_if_bw(filter, bandwidth);
+
+ field = &if_filter_fields[filter];
+
+ return e4k_field_write(e4k, field, bw_idx);
+}
+
+/*! \brief Enables / Disables the channel filter
+ * \param[in] e4k reference to the tuner chip
+ * \param[in] on 1=filter enabled, 0=filter disabled
+ * \returns 0 success, negative errors
+ */
+int e4k_if_filter_chan_enable(struct e4k_state *e4k, int on)
+{
+ return e4k_reg_set_mask(e4k, E4K_REG_FILT3, E4K_FILT3_DISABLE,
+ on ? 0 : E4K_FILT3_DISABLE);
+}
+
+int e4k_if_filter_bw_get(struct e4k_state *e4k, enum e4k_if_filter filter)
+{
+ const uint32_t *arr;
+ int rc;
+ const struct reg_field *field;
+
+ if (filter >= ARRAY_SIZE(if_filter_bw))
+ return -EINVAL;
+
+ field = &if_filter_fields[filter];
+
+ rc = e4k_field_read(e4k, field);
+ if (rc < 0)
+ return rc;
+
+ arr = if_filter_bw[filter];
+
+ return arr[rc];
+}
+
+
+/***********************************************************************
+ * Frequency Control */
+
+#define E4K_FVCO_MIN_KHZ 2600000 /* 2.6 GHz */
+#define E4K_FVCO_MAX_KHZ 3900000 /* 3.9 GHz */
+#define E4K_PLL_Y 65536
+
+#ifdef OUT_OF_SPEC
+#define E4K_FLO_MIN_MHZ 50
+#define E4K_FLO_MAX_MHZ 2200UL
+#else
+#define E4K_FLO_MIN_MHZ 64
+#define E4K_FLO_MAX_MHZ 1700
+#endif
+
+struct pll_settings {
+ uint32_t freq;
+ uint8_t reg_synth7;
+ uint8_t mult;
+};
+
+static const struct pll_settings pll_vars[] = {
+ {KHZ(72400), (1 << 3) | 7, 48},
+ {KHZ(81200), (1 << 3) | 6, 40},
+ {KHZ(108300), (1 << 3) | 5, 32},
+ {KHZ(162500), (1 << 3) | 4, 24},
+ {KHZ(216600), (1 << 3) | 3, 16},
+ {KHZ(325000), (1 << 3) | 2, 12},
+ {KHZ(350000), (1 << 3) | 1, 8},
+ {KHZ(432000), (0 << 3) | 3, 8},
+ {KHZ(667000), (0 << 3) | 2, 6},
+ {KHZ(1200000), (0 << 3) | 1, 4}
+};
+
+static int is_fvco_valid(uint32_t fvco_z)
+{
+ /* check if the resulting fosc is valid */
+ if (fvco_z/1000 < E4K_FVCO_MIN_KHZ ||
+ fvco_z/1000 > E4K_FVCO_MAX_KHZ) {
+ fprintf(stderr, "[E4K] Fvco %u invalid\n", fvco_z);
+ return 0;
+ }
+
+ return 1;
+}
+
+static int is_fosc_valid(uint32_t fosc)
+{
+ if (fosc < MHZ(16) || fosc > MHZ(30)) {
+ fprintf(stderr, "[E4K] Fosc %u invalid\n", fosc);
+ return 0;
+ }
+
+ return 1;
+}
+
+static int is_z_valid(uint32_t z)
+{
+ if (z > 255) {
+ fprintf(stderr, "[E4K] Z %u invalid\n", z);
+ return 0;
+ }
+
+ return 1;
+}
+
+/*! \brief Determine if 3-phase mixing shall be used or not */
+static int use_3ph_mixing(uint32_t flo)
+{
+ /* this is a magic number somewhre between VHF and UHF */
+ if (flo < MHZ(350))
+ return 1;
+
+ return 0;
+}
+
+/* \brief compute Fvco based on Fosc, Z and X
+ * \returns positive value (Fvco in Hz), 0 in case of error */
+static uint64_t compute_fvco(uint32_t f_osc, uint8_t z, uint16_t x)
+{
+ uint64_t fvco_z, fvco_x, fvco;
+
+ /* We use the following transformation in order to
+ * handle the fractional part with integer arithmetic:
+ * Fvco = Fosc * (Z + X/Y) <=> Fvco = Fosc * Z + (Fosc * X)/Y
+ * This avoids X/Y = 0. However, then we would overflow a 32bit
+ * integer, as we cannot hold e.g. 26 MHz * 65536 either.
+ */
+ fvco_z = (uint64_t)f_osc * z;
+
+#if 0
+ if (!is_fvco_valid(fvco_z))
+ return 0;
+#endif
+
+ fvco_x = ((uint64_t)f_osc * x) / E4K_PLL_Y;
+
+ fvco = fvco_z + fvco_x;
+
+ return fvco;
+}
+
+static uint32_t compute_flo(uint32_t f_osc, uint8_t z, uint16_t x, uint8_t r)
+{
+ uint64_t fvco = compute_fvco(f_osc, z, x);
+ if (fvco == 0)
+ return -EINVAL;
+
+ return fvco / r;
+}
+
+static int e4k_band_set(struct e4k_state *e4k, enum e4k_band band)
+{
+ int rc;
+
+ switch (band) {
+ case E4K_BAND_VHF2:
+ case E4K_BAND_VHF3:
+ case E4K_BAND_UHF:
+ e4k_reg_write(e4k, E4K_REG_BIAS, 3);
+ break;
+ case E4K_BAND_L:
+ e4k_reg_write(e4k, E4K_REG_BIAS, 0);
+ break;
+ }
+
+ /* workaround: if we don't reset this register before writing to it,
+ * we get a gap between 325-350 MHz */
+ rc = e4k_reg_set_mask(e4k, E4K_REG_SYNTH1, 0x06, 0);
+ rc = e4k_reg_set_mask(e4k, E4K_REG_SYNTH1, 0x06, band << 1);
+ if (rc >= 0)
+ e4k->band = band;
+
+ return rc;
+}
+
+/*! \brief Compute PLL parameters for givent target frequency
+ * \param[out] oscp Oscillator parameters, if computation successful
+ * \param[in] fosc Clock input frequency applied to the chip (Hz)
+ * \param[in] intended_flo target tuning frequency (Hz)
+ * \returns actual PLL frequency, as close as possible to intended_flo,
+ * 0 in case of error
+ */
+uint32_t e4k_compute_pll_params(struct e4k_pll_params *oscp, uint32_t fosc, uint32_t intended_flo)
+{
+ uint32_t i;
+ uint8_t r = 2;
+ uint64_t intended_fvco, remainder;
+ uint64_t z = 0;
+ uint32_t x;
+ int flo;
+ int three_phase_mixing = 0;
+ oscp->r_idx = 0;
+
+ if (!is_fosc_valid(fosc))
+ return 0;
+
+ for(i = 0; i < ARRAY_SIZE(pll_vars); ++i) {
+ if(intended_flo < pll_vars[i].freq) {
+ three_phase_mixing = (pll_vars[i].reg_synth7 & 0x08) ? 1 : 0;
+ oscp->r_idx = pll_vars[i].reg_synth7;
+ r = pll_vars[i].mult;
+ break;
+ }
+ }
+
+ //fprintf(stderr, "[E4K] Fint=%u, R=%u\n", intended_flo, r);
+
+ /* flo(max) = 1700MHz, R(max) = 48, we need 64bit! */
+ intended_fvco = (uint64_t)intended_flo * r;
+
+ /* compute integral component of multiplier */
+ z = intended_fvco / fosc;
+
+ /* compute fractional part. this will not overflow,
+ * as fosc(max) = 30MHz and z(max) = 255 */
+ remainder = intended_fvco - (fosc * z);
+ /* remainder(max) = 30MHz, E4K_PLL_Y = 65536 -> 64bit! */
+ x = (remainder * E4K_PLL_Y) / fosc;
+ /* x(max) as result of this computation is 65536 */
+
+ flo = compute_flo(fosc, z, x, r);
+
+ oscp->fosc = fosc;
+ oscp->flo = flo;
+ oscp->intended_flo = intended_flo;
+ oscp->r = r;
+// oscp->r_idx = pll_vars[i].reg_synth7 & 0x0;
+ oscp->threephase = three_phase_mixing;
+ oscp->x = x;
+ oscp->z = z;
+
+ return flo;
+}
+
+int e4k_tune_params(struct e4k_state *e4k, struct e4k_pll_params *p)
+{
+ /* program R + 3phase/2phase */
+ e4k_reg_write(e4k, E4K_REG_SYNTH7, p->r_idx);
+ /* program Z */
+ e4k_reg_write(e4k, E4K_REG_SYNTH3, p->z);
+ /* program X */
+ e4k_reg_write(e4k, E4K_REG_SYNTH4, p->x & 0xff);
+ e4k_reg_write(e4k, E4K_REG_SYNTH5, p->x >> 8);
+
+ /* we're in auto calibration mode, so there's no need to trigger it */
+
+ memcpy(&e4k->vco, p, sizeof(e4k->vco));
+
+ /* set the band */
+ if (e4k->vco.flo < MHZ(140))
+ e4k_band_set(e4k, E4K_BAND_VHF2);
+ else if (e4k->vco.flo < MHZ(350))
+ e4k_band_set(e4k, E4K_BAND_VHF3);
+ else if (e4k->vco.flo < MHZ(1135))
+ e4k_band_set(e4k, E4K_BAND_UHF);
+ else
+ e4k_band_set(e4k, E4K_BAND_L);
+
+ /* select and set proper RF filter */
+ e4k_rf_filter_set(e4k);
+
+ return e4k->vco.flo;
+}
+
+/*! \brief High-level tuning API, just specify frquency
+ *
+ * This function will compute matching PLL parameters, program them into the
+ * hardware and set the band as well as RF filter.
+ *
+ * \param[in] e4k reference to tuner
+ * \param[in] freq frequency in Hz
+ * \returns actual tuned frequency, negative in case of error
+ */
+int e4k_tune_freq(struct e4k_state *e4k, uint32_t freq)
+{
+ uint32_t rc;
+ struct e4k_pll_params p;
+
+ /* determine PLL parameters */
+ rc = e4k_compute_pll_params(&p, e4k->vco.fosc, freq);
+ if (!rc)
+ return -EINVAL;
+
+ /* actually tune to those parameters */
+ rc = e4k_tune_params(e4k, &p);
+
+ /* check PLL lock */
+ rc = e4k_reg_read(e4k, E4K_REG_SYNTH1);
+ if (!(rc & 0x01)) {
+ fprintf(stderr, "[E4K] PLL not locked for %u Hz!\n", freq);
+ return -1;
+ }
+
+ return 0;
+}
+
+/***********************************************************************
+ * Gain Control */
+
+static const int8_t if_stage1_gain[] = {
+ -3, 6
+};
+
+static const int8_t if_stage23_gain[] = {
+ 0, 3, 6, 9
+};
+
+static const int8_t if_stage4_gain[] = {
+ 0, 1, 2, 2
+};
+
+static const int8_t if_stage56_gain[] = {
+ 3, 6, 9, 12, 15, 15, 15, 15
+};
+
+static const int8_t *if_stage_gain[] = {
+ 0,
+ if_stage1_gain,
+ if_stage23_gain,
+ if_stage23_gain,
+ if_stage4_gain,
+ if_stage56_gain,
+ if_stage56_gain
+};
+
+static const uint8_t if_stage_gain_len[] = {
+ 0,
+ ARRAY_SIZE(if_stage1_gain),
+ ARRAY_SIZE(if_stage23_gain),
+ ARRAY_SIZE(if_stage23_gain),
+ ARRAY_SIZE(if_stage4_gain),
+ ARRAY_SIZE(if_stage56_gain),
+ ARRAY_SIZE(if_stage56_gain)
+};
+
+static const struct reg_field if_stage_gain_regs[] = {
+ { 0, 0, 0 },
+ { E4K_REG_GAIN3, 0, 1 },
+ { E4K_REG_GAIN3, 1, 2 },
+ { E4K_REG_GAIN3, 3, 2 },
+ { E4K_REG_GAIN3, 5, 2 },
+ { E4K_REG_GAIN4, 0, 3 },
+ { E4K_REG_GAIN4, 3, 3 }
+};
+
+static const int32_t lnagain[] = {
+ -50, 0,
+ -25, 1,
+ 0, 4,
+ 25, 5,
+ 50, 6,
+ 75, 7,
+ 100, 8,
+ 125, 9,
+ 150, 10,
+ 175, 11,
+ 200, 12,
+ 250, 13,
+ 300, 14,
+};
+
+static const int32_t enhgain[] = {
+ 10, 30, 50, 70
+};
+
+int e4k_set_lna_gain(struct e4k_state *e4k, int32_t gain)
+{
+ uint32_t i;
+ for(i = 0; i < ARRAY_SIZE(lnagain)/2; ++i) {
+ if(lnagain[i*2] == gain) {
+ e4k_reg_set_mask(e4k, E4K_REG_GAIN1, 0xf, lnagain[i*2+1]);
+ return gain;
+ }
+ }
+ return -EINVAL;
+}
+
+int e4k_set_enh_gain(struct e4k_state *e4k, int32_t gain)
+{
+ uint32_t i;
+ for(i = 0; i < ARRAY_SIZE(enhgain); ++i) {
+ if(enhgain[i] == gain) {
+ e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, E4K_AGC11_LNA_GAIN_ENH | (i << 1));
+ return gain;
+ }
+ }
+ e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, 0);
+
+ /* special case: 0 = off*/
+ if(0 == gain)
+ return 0;
+ else
+ return -EINVAL;
+}
+
+int e4k_enable_manual_gain(struct e4k_state *e4k, uint8_t manual)
+{
+ if (manual) {
+ /* Set LNA mode to manual */
+ e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, E4K_AGC_MOD_SERIAL);
+
+ /* Set Mixer Gain Control to manual */
+ e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0);
+ } else {
+ /* Set LNA mode to auto */
+ e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, E4K_AGC_MOD_IF_SERIAL_LNA_AUTON);
+ /* Set Mixer Gain Control to auto */
+ e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 1);
+
+ e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, 0);
+ }
+
+ return 0;
+}
+
+static int find_stage_gain(uint8_t stage, int8_t val)
+{
+ const int8_t *arr;
+ int i;
+
+ if (stage >= ARRAY_SIZE(if_stage_gain))
+ return -EINVAL;
+
+ arr = if_stage_gain[stage];
+
+ for (i = 0; i < if_stage_gain_len[stage]; i++) {
+ if (arr[i] == val)
+ return i;
+ }
+ return -EINVAL;
+}
+
+/*! \brief Set the gain of one of the IF gain stages
+ * \param e4k handle to the tuner chip
+ * \param stage number of the stage (1..6)
+ * \param value gain value in dB
+ * \returns 0 on success, negative in case of error
+ */
+int e4k_if_gain_set(struct e4k_state *e4k, uint8_t stage, int8_t value)
+{
+ int rc;
+ uint8_t mask;
+ const struct reg_field *field;
+
+ rc = find_stage_gain(stage, value);
+ if (rc < 0)
+ return rc;
+
+ /* compute the bit-mask for the given gain field */
+ field = &if_stage_gain_regs[stage];
+ mask = width2mask[field->width] << field->shift;
+
+ return e4k_reg_set_mask(e4k, field->reg, mask, rc << field->shift);
+}
+
+int e4k_mixer_gain_set(struct e4k_state *e4k, int8_t value)
+{
+ uint8_t bit;
+
+ switch (value) {
+ case 4:
+ bit = 0;
+ break;
+ case 12:
+ bit = 1;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return e4k_reg_set_mask(e4k, E4K_REG_GAIN2, 1, bit);
+}
+
+int e4k_commonmode_set(struct e4k_state *e4k, int8_t value)
+{
+ if(value < 0)
+ return -EINVAL;
+ else if(value > 7)
+ return -EINVAL;
+
+ return e4k_reg_set_mask(e4k, E4K_REG_DC7, 7, value);
+}
+
+/***********************************************************************
+ * DC Offset */
+
+int e4k_manual_dc_offset(struct e4k_state *e4k, int8_t iofs, int8_t irange, int8_t qofs, int8_t qrange)
+{
+ int res;
+
+ if((iofs < 0x00) || (iofs > 0x3f))
+ return -EINVAL;
+ if((irange < 0x00) || (irange > 0x03))
+ return -EINVAL;
+ if((qofs < 0x00) || (qofs > 0x3f))
+ return -EINVAL;
+ if((qrange < 0x00) || (qrange > 0x03))
+ return -EINVAL;
+
+ res = e4k_reg_set_mask(e4k, E4K_REG_DC2, 0x3f, iofs);
+ if(res < 0)
+ return res;
+
+ res = e4k_reg_set_mask(e4k, E4K_REG_DC3, 0x3f, qofs);
+ if(res < 0)
+ return res;
+
+ res = e4k_reg_set_mask(e4k, E4K_REG_DC4, 0x33, (qrange << 4) | irange);
+ return res;
+}
+
+/*! \brief Perform a DC offset calibration right now
+ * \param [e4k] handle to the tuner chip
+ */
+int e4k_dc_offset_calibrate(struct e4k_state *e4k)
+{
+ /* make sure the DC range detector is enabled */
+ e4k_reg_set_mask(e4k, E4K_REG_DC5, E4K_DC5_RANGE_DET_EN, E4K_DC5_RANGE_DET_EN);
+
+ return e4k_reg_write(e4k, E4K_REG_DC1, 0x01);
+}
+
+
+static const int8_t if_gains_max[] = {
+ 0, 6, 9, 9, 2, 15, 15
+};
+
+struct gain_comb {
+ int8_t mixer_gain;
+ int8_t if1_gain;
+ uint8_t reg;
+};
+
+static const struct gain_comb dc_gain_comb[] = {
+ { 4, -3, 0x50 },
+ { 4, 6, 0x51 },
+ { 12, -3, 0x52 },
+ { 12, 6, 0x53 },
+};
+
+#define TO_LUT(offset, range) (offset | (range << 6))
+
+int e4k_dc_offset_gen_table(struct e4k_state *e4k)
+{
+ uint32_t i;
+
+ /* FIXME: read ont current gain values and write them back
+ * before returning to the caller */
+
+ /* disable auto mixer gain */
+ e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0);
+
+ /* set LNA/IF gain to full manual */
+ e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK,
+ E4K_AGC_MOD_SERIAL);
+
+ /* set all 'other' gains to maximum */
+ for (i = 2; i <= 6; i++)
+ e4k_if_gain_set(e4k, i, if_gains_max[i]);
+
+ /* iterate over all mixer + if_stage_1 gain combinations */
+ for (i = 0; i < ARRAY_SIZE(dc_gain_comb); i++) {
+ uint8_t offs_i, offs_q, range, range_i, range_q;
+
+ /* set the combination of mixer / if1 gain */
+ e4k_mixer_gain_set(e4k, dc_gain_comb[i].mixer_gain);
+ e4k_if_gain_set(e4k, 1, dc_gain_comb[i].if1_gain);
+
+ /* perform actual calibration */
+ e4k_dc_offset_calibrate(e4k);
+
+ /* extract I/Q offset and range values */
+ offs_i = e4k_reg_read(e4k, E4K_REG_DC2) & 0x3f;
+ offs_q = e4k_reg_read(e4k, E4K_REG_DC3) & 0x3f;
+ range = e4k_reg_read(e4k, E4K_REG_DC4);
+ range_i = range & 0x3;
+ range_q = (range >> 4) & 0x3;
+
+ fprintf(stderr, "[E4K] Table %u I=%u/%u, Q=%u/%u\n",
+ i, range_i, offs_i, range_q, offs_q);
+
+ /* write into the table */
+ e4k_reg_write(e4k, dc_gain_comb[i].reg,
+ TO_LUT(offs_q, range_q));
+ e4k_reg_write(e4k, dc_gain_comb[i].reg + 0x10,
+ TO_LUT(offs_i, range_i));
+ }
+
+ return 0;
+}
+
+/***********************************************************************
+ * Standby */
+
+/*! \brief Enable/disable standby mode
+ */
+int e4k_standby(struct e4k_state *e4k, int enable)
+{
+ e4k_reg_set_mask(e4k, E4K_REG_MASTER1, E4K_MASTER1_NORM_STBY,
+ enable ? 0 : E4K_MASTER1_NORM_STBY);
+
+ return 0;
+}
+
+/***********************************************************************
+ * Initialization */
+
+static int magic_init(struct e4k_state *e4k)
+{
+ e4k_reg_write(e4k, 0x7e, 0x01);
+ e4k_reg_write(e4k, 0x7f, 0xfe);
+ e4k_reg_write(e4k, 0x82, 0x00);
+ e4k_reg_write(e4k, 0x86, 0x50); /* polarity A */
+ e4k_reg_write(e4k, 0x87, 0x20);
+ e4k_reg_write(e4k, 0x88, 0x01);
+ e4k_reg_write(e4k, 0x9f, 0x7f);
+ e4k_reg_write(e4k, 0xa0, 0x07);
+
+ return 0;
+}
+
+/*! \brief Initialize the E4K tuner
+ */
+int e4k_init(struct e4k_state *e4k)
+{
+ /* make a dummy i2c read or write command, will not be ACKed! */
+ e4k_reg_read(e4k, 0);
+
+ /* Make sure we reset everything and clear POR indicator */
+ e4k_reg_write(e4k, E4K_REG_MASTER1,
+ E4K_MASTER1_RESET |
+ E4K_MASTER1_NORM_STBY |
+ E4K_MASTER1_POR_DET
+ );
+
+ /* Configure clock input */
+ e4k_reg_write(e4k, E4K_REG_CLK_INP, 0x00);
+
+ /* Disable clock output */
+ e4k_reg_write(e4k, E4K_REG_REF_CLK, 0x00);
+ e4k_reg_write(e4k, E4K_REG_CLKOUT_PWDN, 0x96);
+
+ /* Write some magic values into registers */
+ magic_init(e4k);
+#if 0
+ /* Set common mode voltage a bit higher for more margin 850 mv */
+ e4k_commonmode_set(e4k, 4);
+
+ /* Initialize DC offset lookup tables */
+ e4k_dc_offset_gen_table(e4k);
+
+ /* Enable time variant DC correction */
+ e4k_reg_write(e4k, E4K_REG_DCTIME1, 0x01);
+ e4k_reg_write(e4k, E4K_REG_DCTIME2, 0x01);
+#endif
+
+ /* Set LNA mode to manual */
+ e4k_reg_write(e4k, E4K_REG_AGC4, 0x10); /* High threshold */
+ e4k_reg_write(e4k, E4K_REG_AGC5, 0x04); /* Low threshold */
+ e4k_reg_write(e4k, E4K_REG_AGC6, 0x1a); /* LNA calib + loop rate */
+
+ e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK,
+ E4K_AGC_MOD_SERIAL);
+
+ /* Set Mixer Gain Control to manual */
+ e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0);
+
+#if 0
+ /* Enable LNA Gain enhancement */
+ e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7,
+ E4K_AGC11_LNA_GAIN_ENH | (2 << 1));
+
+ /* Enable automatic IF gain mode switching */
+ e4k_reg_set_mask(e4k, E4K_REG_AGC8, 0x1, E4K_AGC8_SENS_LIN_AUTO);
+#endif
+
+ /* Use auto-gain as default */
+ e4k_enable_manual_gain(e4k, 0);
+
+ /* Select moderate gain levels */
+ e4k_if_gain_set(e4k, 1, 6);
+ e4k_if_gain_set(e4k, 2, 0);
+ e4k_if_gain_set(e4k, 3, 0);
+ e4k_if_gain_set(e4k, 4, 0);
+ e4k_if_gain_set(e4k, 5, 9);
+ e4k_if_gain_set(e4k, 6, 9);
+
+ /* Set the most narrow filter we can possibly use */
+ e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_MIX, KHZ(1900));
+ e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_RC, KHZ(1000));
+ e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_CHAN, KHZ(2150));
+ e4k_if_filter_chan_enable(e4k, 1);
+
+ /* Disable time variant DC correction and LUT */
+ e4k_reg_set_mask(e4k, E4K_REG_DC5, 0x03, 0);
+ e4k_reg_set_mask(e4k, E4K_REG_DCTIME1, 0x03, 0);
+ e4k_reg_set_mask(e4k, E4K_REG_DCTIME2, 0x03, 0);
+
+ return 0;
+}
diff --git a/hardware/src/r820/src/tuner_fc0012.c b/hardware/src/r820/src/tuner_fc0012.c
new file mode 100644
index 0000000..768cf1c
--- /dev/null
+++ b/hardware/src/r820/src/tuner_fc0012.c
@@ -0,0 +1,345 @@
+/*
+ * Fitipower FC0012 tuner driver
+ *
+ * Copyright (C) 2012 Hans-Frieder Vogt <hfvogt@gmx.net>
+ *
+ * modified for use in librtlsdr
+ * Copyright (C) 2012 Steve Markgraf <steve@steve-m.de>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <stdint.h>
+#include <stdio.h>
+
+#include "rtlsdr_i2c.h"
+#include "tuner_fc0012.h"
+
+static int fc0012_writereg(void *dev, uint8_t reg, uint8_t val)
+{
+ uint8_t data[2];
+ data[0] = reg;
+ data[1] = val;
+
+ if (rtlsdr_i2c_write_fn(dev, FC0012_I2C_ADDR, data, 2) < 0)
+ return -1;
+
+ return 0;
+}
+
+static int fc0012_readreg(void *dev, uint8_t reg, uint8_t *val)
+{
+ uint8_t data = reg;
+
+ if (rtlsdr_i2c_write_fn(dev, FC0012_I2C_ADDR, &data, 1) < 0)
+ return -1;
+
+ if (rtlsdr_i2c_read_fn(dev, FC0012_I2C_ADDR, &data, 1) < 0)
+ return -1;
+
+ *val = data;
+
+ return 0;
+}
+
+/* Incomplete list of register settings:
+ *
+ * Name Reg Bits Desc
+ * CHIP_ID 0x00 0-7 Chip ID (constant 0xA1)
+ * RF_A 0x01 0-3 Number of count-to-9 cycles in RF
+ * divider (suggested: 2..9)
+ * RF_M 0x02 0-7 Total number of cycles (to-8 and to-9)
+ * in RF divider
+ * RF_K_HIGH 0x03 0-6 Bits 8..14 of fractional divider
+ * RF_K_LOW 0x04 0-7 Bits 0..7 of fractional RF divider
+ * RF_OUTDIV_A 0x05 3-7 Power of two required?
+ * LNA_POWER_DOWN 0x06 0 Set to 1 to switch off low noise amp
+ * RF_OUTDIV_B 0x06 1 Set to select 3 instead of 2 for the
+ * RF output divider
+ * VCO_SPEED 0x06 3 Select tuning range of VCO:
+ * 0 = Low range, (ca. 1.1 - 1.5GHz)
+ * 1 = High range (ca. 1.4 - 1.8GHz)
+ * BANDWIDTH 0x06 6-7 Set bandwidth. 6MHz = 0x80, 7MHz=0x40
+ * 8MHz=0x00
+ * XTAL_SPEED 0x07 5 Set to 1 for 28.8MHz Crystal input
+ * or 0 for 36MHz
+ * <agc params> 0x08 0-7
+ * EN_CAL_RSSI 0x09 4 Enable calibrate RSSI
+ * (Receive Signal Strength Indicator)
+ * LNA_FORCE 0x0d 0
+ * AGC_FORCE 0x0d ?
+ * LNA_GAIN 0x13 3-4 Low noise amp gain
+ * LNA_COMPS 0x15 3 ?
+ * VCO_CALIB 0x0e 7 Set high then low to calibrate VCO
+ * (fast lock?)
+ * VCO_VOLTAGE 0x0e 0-6 Read Control voltage of VCO
+ * (big value -> low freq)
+ */
+
+int fc0012_init(void *dev)
+{
+ int ret = 0;
+ unsigned int i;
+ uint8_t reg[] = {
+ 0x00, /* dummy reg. 0 */
+ 0x05, /* reg. 0x01 */
+ 0x10, /* reg. 0x02 */
+ 0x00, /* reg. 0x03 */
+ 0x00, /* reg. 0x04 */
+ 0x0f, /* reg. 0x05: may also be 0x0a */
+ 0x00, /* reg. 0x06: divider 2, VCO slow */
+ 0x00, /* reg. 0x07: may also be 0x0f */
+ 0xff, /* reg. 0x08: AGC Clock divide by 256, AGC gain 1/256,
+ Loop Bw 1/8 */
+ 0x6e, /* reg. 0x09: Disable LoopThrough, Enable LoopThrough: 0x6f */
+ 0xb8, /* reg. 0x0a: Disable LO Test Buffer */
+ 0x82, /* reg. 0x0b: Output Clock is same as clock frequency,
+ may also be 0x83 */
+ 0xfc, /* reg. 0x0c: depending on AGC Up-Down mode, may need 0xf8 */
+ 0x02, /* reg. 0x0d: AGC Not Forcing & LNA Forcing, 0x02 for DVB-T */
+ 0x00, /* reg. 0x0e */
+ 0x00, /* reg. 0x0f */
+ 0x00, /* reg. 0x10: may also be 0x0d */
+ 0x00, /* reg. 0x11 */
+ 0x1f, /* reg. 0x12: Set to maximum gain */
+ 0x08, /* reg. 0x13: Set to Middle Gain: 0x08,
+ Low Gain: 0x00, High Gain: 0x10, enable IX2: 0x80 */
+ 0x00, /* reg. 0x14 */
+ 0x04, /* reg. 0x15: Enable LNA COMPS */
+ };
+
+#if 0
+ switch (rtlsdr_get_tuner_clock(dev)) {
+ case FC_XTAL_27_MHZ:
+ case FC_XTAL_28_8_MHZ:
+ reg[0x07] |= 0x20;
+ break;
+ case FC_XTAL_36_MHZ:
+ default:
+ break;
+ }
+#endif
+ reg[0x07] |= 0x20;
+
+// if (priv->dual_master)
+ reg[0x0c] |= 0x02;
+
+ for (i = 1; i < sizeof(reg); i++) {
+ ret = fc0012_writereg(dev, i, reg[i]);
+ if (ret)
+ break;
+ }
+
+ return ret;
+}
+
+int fc0012_set_params(void *dev, uint32_t freq, uint32_t bandwidth)
+{
+ int i, ret = 0;
+ uint8_t reg[7], am, pm, multi, tmp;
+ uint64_t f_vco;
+ uint32_t xtal_freq_div_2;
+ uint16_t xin, xdiv;
+ int vco_select = 0;
+
+ xtal_freq_div_2 = rtlsdr_get_tuner_clock(dev) / 2;
+
+ /* select frequency divider and the frequency of VCO */
+ if (freq < 37084000) { /* freq * 96 < 3560000000 */
+ multi = 96;
+ reg[5] = 0x82;
+ reg[6] = 0x00;
+ } else if (freq < 55625000) { /* freq * 64 < 3560000000 */
+ multi = 64;
+ reg[5] = 0x82;
+ reg[6] = 0x02;
+ } else if (freq < 74167000) { /* freq * 48 < 3560000000 */
+ multi = 48;
+ reg[5] = 0x42;
+ reg[6] = 0x00;
+ } else if (freq < 111250000) { /* freq * 32 < 3560000000 */
+ multi = 32;
+ reg[5] = 0x42;
+ reg[6] = 0x02;
+ } else if (freq < 148334000) { /* freq * 24 < 3560000000 */
+ multi = 24;
+ reg[5] = 0x22;
+ reg[6] = 0x00;
+ } else if (freq < 222500000) { /* freq * 16 < 3560000000 */
+ multi = 16;
+ reg[5] = 0x22;
+ reg[6] = 0x02;
+ } else if (freq < 296667000) { /* freq * 12 < 3560000000 */
+ multi = 12;
+ reg[5] = 0x12;
+ reg[6] = 0x00;
+ } else if (freq < 445000000) { /* freq * 8 < 3560000000 */
+ multi = 8;
+ reg[5] = 0x12;
+ reg[6] = 0x02;
+ } else if (freq < 593334000) { /* freq * 6 < 3560000000 */
+ multi = 6;
+ reg[5] = 0x0a;
+ reg[6] = 0x00;
+ } else {
+ multi = 4;
+ reg[5] = 0x0a;
+ reg[6] = 0x02;
+ }
+
+ f_vco = freq * multi;
+
+ if (f_vco >= 3060000000U) {
+ reg[6] |= 0x08;
+ vco_select = 1;
+ }
+
+ /* From divided value (XDIV) determined the FA and FP value */
+ xdiv = (uint16_t)(f_vco / xtal_freq_div_2);
+ if ((f_vco - xdiv * xtal_freq_div_2) >= (xtal_freq_div_2 / 2))
+ xdiv++;
+
+ pm = (uint8_t)(xdiv / 8);
+ am = (uint8_t)(xdiv - (8 * pm));
+
+ if (am < 2) {
+ am += 8;
+ pm--;
+ }
+
+ if (pm > 31) {
+ reg[1] = am + (8 * (pm - 31));
+ reg[2] = 31;
+ } else {
+ reg[1] = am;
+ reg[2] = pm;
+ }
+
+ if ((reg[1] > 15) || (reg[2] < 0x0b)) {
+ fprintf(stderr, "[FC0012] no valid PLL combination "
+ "found for %u Hz!\n", freq);
+ return -1;
+ }
+
+ /* fix clock out */
+ reg[6] |= 0x20;
+
+ /* From VCO frequency determines the XIN ( fractional part of Delta
+ Sigma PLL) and divided value (XDIV) */
+ xin = (uint16_t)((f_vco - (f_vco / xtal_freq_div_2) * xtal_freq_div_2) / 1000);
+ xin = (xin << 15) / (xtal_freq_div_2 / 1000);
+ if (xin >= 16384)
+ xin += 32768;
+
+ reg[3] = xin >> 8; /* xin with 9 bit resolution */
+ reg[4] = xin & 0xff;
+
+ reg[6] &= 0x3f; /* bits 6 and 7 describe the bandwidth */
+ switch (bandwidth) {
+ case 6000000:
+ reg[6] |= 0x80;
+ break;
+ case 7000000:
+ reg[6] |= 0x40;
+ break;
+ case 8000000:
+ default:
+ break;
+ }
+
+ /* modified for Realtek demod */
+ reg[5] |= 0x07;
+
+ for (i = 1; i <= 6; i++) {
+ ret = fc0012_writereg(dev, i, reg[i]);
+ if (ret)
+ goto exit;
+ }
+
+ /* VCO Calibration */
+ ret = fc0012_writereg(dev, 0x0e, 0x80);
+ if (!ret)
+ ret = fc0012_writereg(dev, 0x0e, 0x00);
+
+ /* VCO Re-Calibration if needed */
+ if (!ret)
+ ret = fc0012_writereg(dev, 0x0e, 0x00);
+
+ if (!ret) {
+// msleep(10);
+ ret = fc0012_readreg(dev, 0x0e, &tmp);
+ }
+ if (ret)
+ goto exit;
+
+ /* vco selection */
+ tmp &= 0x3f;
+
+ if (vco_select) {
+ if (tmp > 0x3c) {
+ reg[6] &= ~0x08;
+ ret = fc0012_writereg(dev, 0x06, reg[6]);
+ if (!ret)
+ ret = fc0012_writereg(dev, 0x0e, 0x80);
+ if (!ret)
+ ret = fc0012_writereg(dev, 0x0e, 0x00);
+ }
+ } else {
+ if (tmp < 0x02) {
+ reg[6] |= 0x08;
+ ret = fc0012_writereg(dev, 0x06, reg[6]);
+ if (!ret)
+ ret = fc0012_writereg(dev, 0x0e, 0x80);
+ if (!ret)
+ ret = fc0012_writereg(dev, 0x0e, 0x00);
+ }
+ }
+
+exit:
+ return ret;
+}
+
+int fc0012_set_gain(void *dev, int gain)
+{
+ int ret;
+ uint8_t tmp = 0;
+
+ ret = fc0012_readreg(dev, 0x13, &tmp);
+
+ /* mask bits off */
+ tmp &= 0xe0;
+
+ switch (gain) {
+ case -99: /* -9.9 dB */
+ tmp |= 0x02;
+ break;
+ case -40: /* -4 dB */
+ break;
+ case 71:
+ tmp |= 0x08; /* 7.1 dB */
+ break;
+ case 179:
+ tmp |= 0x17; /* 17.9 dB */
+ break;
+ case 192:
+ default:
+ tmp |= 0x10; /* 19.2 dB */
+ break;
+ }
+
+ ret = fc0012_writereg(dev, 0x13, tmp);
+
+ return ret;
+}
diff --git a/hardware/src/r820/src/tuner_fc0013.c b/hardware/src/r820/src/tuner_fc0013.c
new file mode 100644
index 0000000..5984dfb
--- /dev/null
+++ b/hardware/src/r820/src/tuner_fc0013.c
@@ -0,0 +1,500 @@
+/*
+ * Fitipower FC0013 tuner driver
+ *
+ * Copyright (C) 2012 Hans-Frieder Vogt <hfvogt@gmx.net>
+ * partially based on driver code from Fitipower
+ * Copyright (C) 2010 Fitipower Integrated Technology Inc
+ *
+ * modified for use in librtlsdr
+ * Copyright (C) 2012 Steve Markgraf <steve@steve-m.de>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ */
+
+#include <stdint.h>
+#include <stdio.h>
+
+#include "rtlsdr_i2c.h"
+#include "tuner_fc0013.h"
+
+static int fc0013_writereg(void *dev, uint8_t reg, uint8_t val)
+{
+ uint8_t data[2];
+ data[0] = reg;
+ data[1] = val;
+
+ if (rtlsdr_i2c_write_fn(dev, FC0013_I2C_ADDR, data, 2) < 0)
+ return -1;
+
+ return 0;
+}
+
+static int fc0013_readreg(void *dev, uint8_t reg, uint8_t *val)
+{
+ uint8_t data = reg;
+
+ if (rtlsdr_i2c_write_fn(dev, FC0013_I2C_ADDR, &data, 1) < 0)
+ return -1;
+
+ if (rtlsdr_i2c_read_fn(dev, FC0013_I2C_ADDR, &data, 1) < 0)
+ return -1;
+
+ *val = data;
+
+ return 0;
+}
+
+int fc0013_init(void *dev)
+{
+ int ret = 0;
+ unsigned int i;
+ uint8_t reg[] = {
+ 0x00, /* reg. 0x00: dummy */
+ 0x09, /* reg. 0x01 */
+ 0x16, /* reg. 0x02 */
+ 0x00, /* reg. 0x03 */
+ 0x00, /* reg. 0x04 */
+ 0x17, /* reg. 0x05 */
+ 0x02, /* reg. 0x06: LPF bandwidth */
+ 0x0a, /* reg. 0x07: CHECK */
+ 0xff, /* reg. 0x08: AGC Clock divide by 256, AGC gain 1/256,
+ Loop Bw 1/8 */
+ 0x6e, /* reg. 0x09: Disable LoopThrough, Enable LoopThrough: 0x6f */
+ 0xb8, /* reg. 0x0a: Disable LO Test Buffer */
+ 0x82, /* reg. 0x0b: CHECK */
+ 0xfc, /* reg. 0x0c: depending on AGC Up-Down mode, may need 0xf8 */
+ 0x01, /* reg. 0x0d: AGC Not Forcing & LNA Forcing, may need 0x02 */
+ 0x00, /* reg. 0x0e */
+ 0x00, /* reg. 0x0f */
+ 0x00, /* reg. 0x10 */
+ 0x00, /* reg. 0x11 */
+ 0x00, /* reg. 0x12 */
+ 0x00, /* reg. 0x13 */
+ 0x50, /* reg. 0x14: DVB-t High Gain, UHF.
+ Middle Gain: 0x48, Low Gain: 0x40 */
+ 0x01, /* reg. 0x15 */
+ };
+#if 0
+ switch (rtlsdr_get_tuner_clock(dev)) {
+ case FC_XTAL_27_MHZ:
+ case FC_XTAL_28_8_MHZ:
+ reg[0x07] |= 0x20;
+ break;
+ case FC_XTAL_36_MHZ:
+ default:
+ break;
+ }
+#endif
+ reg[0x07] |= 0x20;
+
+// if (dev->dual_master)
+ reg[0x0c] |= 0x02;
+
+ for (i = 1; i < sizeof(reg); i++) {
+ ret = fc0013_writereg(dev, i, reg[i]);
+ if (ret < 0)
+ break;
+ }
+
+ return ret;
+}
+
+int fc0013_rc_cal_add(void *dev, int rc_val)
+{
+ int ret;
+ uint8_t rc_cal;
+ int val;
+
+ /* push rc_cal value, get rc_cal value */
+ ret = fc0013_writereg(dev, 0x10, 0x00);
+ if (ret)
+ goto error_out;
+
+ /* get rc_cal value */
+ ret = fc0013_readreg(dev, 0x10, &rc_cal);
+ if (ret)
+ goto error_out;
+
+ rc_cal &= 0x0f;
+
+ val = (int)rc_cal + rc_val;
+
+ /* forcing rc_cal */
+ ret = fc0013_writereg(dev, 0x0d, 0x11);
+ if (ret)
+ goto error_out;
+
+ /* modify rc_cal value */
+ if (val > 15)
+ ret = fc0013_writereg(dev, 0x10, 0x0f);
+ else if (val < 0)
+ ret = fc0013_writereg(dev, 0x10, 0x00);
+ else
+ ret = fc0013_writereg(dev, 0x10, (uint8_t)val);
+
+error_out:
+ return ret;
+}
+
+int fc0013_rc_cal_reset(void *dev)
+{
+ int ret;
+
+ ret = fc0013_writereg(dev, 0x0d, 0x01);
+ if (!ret)
+ ret = fc0013_writereg(dev, 0x10, 0x00);
+
+ return ret;
+}
+
+static int fc0013_set_vhf_track(void *dev, uint32_t freq)
+{
+ int ret;
+ uint8_t tmp;
+
+ ret = fc0013_readreg(dev, 0x1d, &tmp);
+ if (ret)
+ goto error_out;
+ tmp &= 0xe3;
+ if (freq <= 177500000) { /* VHF Track: 7 */
+ ret = fc0013_writereg(dev, 0x1d, tmp | 0x1c);
+ } else if (freq <= 184500000) { /* VHF Track: 6 */
+ ret = fc0013_writereg(dev, 0x1d, tmp | 0x18);
+ } else if (freq <= 191500000) { /* VHF Track: 5 */
+ ret = fc0013_writereg(dev, 0x1d, tmp | 0x14);
+ } else if (freq <= 198500000) { /* VHF Track: 4 */
+ ret = fc0013_writereg(dev, 0x1d, tmp | 0x10);
+ } else if (freq <= 205500000) { /* VHF Track: 3 */
+ ret = fc0013_writereg(dev, 0x1d, tmp | 0x0c);
+ } else if (freq <= 219500000) { /* VHF Track: 2 */
+ ret = fc0013_writereg(dev, 0x1d, tmp | 0x08);
+ } else if (freq < 300000000) { /* VHF Track: 1 */
+ ret = fc0013_writereg(dev, 0x1d, tmp | 0x04);
+ } else { /* UHF and GPS */
+ ret = fc0013_writereg(dev, 0x1d, tmp | 0x1c);
+ }
+
+error_out:
+ return ret;
+}
+
+int fc0013_set_params(void *dev, uint32_t freq, uint32_t bandwidth)
+{
+ int i, ret = 0;
+ uint8_t reg[7], am, pm, multi, tmp;
+ uint64_t f_vco;
+ uint32_t xtal_freq_div_2;
+ uint16_t xin, xdiv;
+ int vco_select = 0;
+
+ xtal_freq_div_2 = rtlsdr_get_tuner_clock(dev) / 2;
+
+ /* set VHF track */
+ ret = fc0013_set_vhf_track(dev, freq);
+ if (ret)
+ goto exit;
+
+ if (freq < 300000000) {
+ /* enable VHF filter */
+ ret = fc0013_readreg(dev, 0x07, &tmp);
+ if (ret)
+ goto exit;
+ ret = fc0013_writereg(dev, 0x07, tmp | 0x10);
+ if (ret)
+ goto exit;
+
+ /* disable UHF & disable GPS */
+ ret = fc0013_readreg(dev, 0x14, &tmp);
+ if (ret)
+ goto exit;
+ ret = fc0013_writereg(dev, 0x14, tmp & 0x1f);
+ if (ret)
+ goto exit;
+ } else if (freq <= 862000000) {
+ /* disable VHF filter */
+ ret = fc0013_readreg(dev, 0x07, &tmp);
+ if (ret)
+ goto exit;
+ ret = fc0013_writereg(dev, 0x07, tmp & 0xef);
+ if (ret)
+ goto exit;
+
+ /* enable UHF & disable GPS */
+ ret = fc0013_readreg(dev, 0x14, &tmp);
+ if (ret)
+ goto exit;
+ ret = fc0013_writereg(dev, 0x14, (tmp & 0x1f) | 0x40);
+ if (ret)
+ goto exit;
+ } else {
+ /* disable VHF filter */
+ ret = fc0013_readreg(dev, 0x07, &tmp);
+ if (ret)
+ goto exit;
+ ret = fc0013_writereg(dev, 0x07, tmp & 0xef);
+ if (ret)
+ goto exit;
+
+ /* enable UHF & disable GPS */
+ ret = fc0013_readreg(dev, 0x14, &tmp);
+ if (ret)
+ goto exit;
+ ret = fc0013_writereg(dev, 0x14, (tmp & 0x1f) | 0x40);
+ if (ret)
+ goto exit;
+ }
+
+ /* select frequency divider and the frequency of VCO */
+ if (freq < 37084000) { /* freq * 96 < 3560000000 */
+ multi = 96;
+ reg[5] = 0x82;
+ reg[6] = 0x00;
+ } else if (freq < 55625000) { /* freq * 64 < 3560000000 */
+ multi = 64;
+ reg[5] = 0x02;
+ reg[6] = 0x02;
+ } else if (freq < 74167000) { /* freq * 48 < 3560000000 */
+ multi = 48;
+ reg[5] = 0x42;
+ reg[6] = 0x00;
+ } else if (freq < 111250000) { /* freq * 32 < 3560000000 */
+ multi = 32;
+ reg[5] = 0x82;
+ reg[6] = 0x02;
+ } else if (freq < 148334000) { /* freq * 24 < 3560000000 */
+ multi = 24;
+ reg[5] = 0x22;
+ reg[6] = 0x00;
+ } else if (freq < 222500000) { /* freq * 16 < 3560000000 */
+ multi = 16;
+ reg[5] = 0x42;
+ reg[6] = 0x02;
+ } else if (freq < 296667000) { /* freq * 12 < 3560000000 */
+ multi = 12;
+ reg[5] = 0x12;
+ reg[6] = 0x00;
+ } else if (freq < 445000000) { /* freq * 8 < 3560000000 */
+ multi = 8;
+ reg[5] = 0x22;
+ reg[6] = 0x02;
+ } else if (freq < 593334000) { /* freq * 6 < 3560000000 */
+ multi = 6;
+ reg[5] = 0x0a;
+ reg[6] = 0x00;
+ } else if (freq < 950000000) { /* freq * 4 < 3800000000 */
+ multi = 4;
+ reg[5] = 0x12;
+ reg[6] = 0x02;
+ } else {
+ multi = 2;
+ reg[5] = 0x0a;
+ reg[6] = 0x02;
+ }
+
+ f_vco = freq * multi;
+
+ if (f_vco >= 3060000000U) {
+ reg[6] |= 0x08;
+ vco_select = 1;
+ }
+
+ /* From divided value (XDIV) determined the FA and FP value */
+ xdiv = (uint16_t)(f_vco / xtal_freq_div_2);
+ if ((f_vco - xdiv * xtal_freq_div_2) >= (xtal_freq_div_2 / 2))
+ xdiv++;
+
+ pm = (uint8_t)(xdiv / 8);
+ am = (uint8_t)(xdiv - (8 * pm));
+
+ if (am < 2) {
+ am += 8;
+ pm--;
+ }
+
+ if (pm > 31) {
+ reg[1] = am + (8 * (pm - 31));
+ reg[2] = 31;
+ } else {
+ reg[1] = am;
+ reg[2] = pm;
+ }
+
+ if ((reg[1] > 15) || (reg[2] < 0x0b)) {
+ fprintf(stderr, "[FC0013] no valid PLL combination "
+ "found for %u Hz!\n", freq);
+ return -1;
+ }
+
+ /* fix clock out */
+ reg[6] |= 0x20;
+
+ /* From VCO frequency determines the XIN ( fractional part of Delta
+ Sigma PLL) and divided value (XDIV) */
+ xin = (uint16_t)((f_vco - (f_vco / xtal_freq_div_2) * xtal_freq_div_2) / 1000);
+ xin = (xin << 15) / (xtal_freq_div_2 / 1000);
+ if (xin >= 16384)
+ xin += 32768;
+
+ reg[3] = xin >> 8;
+ reg[4] = xin & 0xff;
+
+ reg[6] &= 0x3f; /* bits 6 and 7 describe the bandwidth */
+ switch (bandwidth) {
+ case 6000000:
+ reg[6] |= 0x80;
+ break;
+ case 7000000:
+ reg[6] |= 0x40;
+ break;
+ case 8000000:
+ default:
+ break;
+ }
+
+ /* modified for Realtek demod */
+ reg[5] |= 0x07;
+
+ for (i = 1; i <= 6; i++) {
+ ret = fc0013_writereg(dev, i, reg[i]);
+ if (ret)
+ goto exit;
+ }
+
+ ret = fc0013_readreg(dev, 0x11, &tmp);
+ if (ret)
+ goto exit;
+ if (multi == 64)
+ ret = fc0013_writereg(dev, 0x11, tmp | 0x04);
+ else
+ ret = fc0013_writereg(dev, 0x11, tmp & 0xfb);
+ if (ret)
+ goto exit;
+
+ /* VCO Calibration */
+ ret = fc0013_writereg(dev, 0x0e, 0x80);
+ if (!ret)
+ ret = fc0013_writereg(dev, 0x0e, 0x00);
+
+ /* VCO Re-Calibration if needed */
+ if (!ret)
+ ret = fc0013_writereg(dev, 0x0e, 0x00);
+
+ if (!ret) {
+// msleep(10);
+ ret = fc0013_readreg(dev, 0x0e, &tmp);
+ }
+ if (ret)
+ goto exit;
+
+ /* vco selection */
+ tmp &= 0x3f;
+
+ if (vco_select) {
+ if (tmp > 0x3c) {
+ reg[6] &= ~0x08;
+ ret = fc0013_writereg(dev, 0x06, reg[6]);
+ if (!ret)
+ ret = fc0013_writereg(dev, 0x0e, 0x80);
+ if (!ret)
+ ret = fc0013_writereg(dev, 0x0e, 0x00);
+ }
+ } else {
+ if (tmp < 0x02) {
+ reg[6] |= 0x08;
+ ret = fc0013_writereg(dev, 0x06, reg[6]);
+ if (!ret)
+ ret = fc0013_writereg(dev, 0x0e, 0x80);
+ if (!ret)
+ ret = fc0013_writereg(dev, 0x0e, 0x00);
+ }
+ }
+
+exit:
+ return ret;
+}
+
+int fc0013_set_gain_mode(void *dev, int manual)
+{
+ int ret = 0;
+ uint8_t tmp = 0;
+
+ ret |= fc0013_readreg(dev, 0x0d, &tmp);
+
+ if (manual)
+ tmp |= (1 << 3);
+ else
+ tmp &= ~(1 << 3);
+
+ ret |= fc0013_writereg(dev, 0x0d, tmp);
+
+ /* set a fixed IF-gain for now */
+ ret |= fc0013_writereg(dev, 0x13, 0x0a);
+
+ return ret;
+}
+
+int fc0013_lna_gains[] ={
+ -99, 0x02,
+ -73, 0x03,
+ -65, 0x05,
+ -63, 0x04,
+ -63, 0x00,
+ -60, 0x07,
+ -58, 0x01,
+ -54, 0x06,
+ 58, 0x0f,
+ 61, 0x0e,
+ 63, 0x0d,
+ 65, 0x0c,
+ 67, 0x0b,
+ 68, 0x0a,
+ 70, 0x09,
+ 71, 0x08,
+ 179, 0x17,
+ 181, 0x16,
+ 182, 0x15,
+ 184, 0x14,
+ 186, 0x13,
+ 188, 0x12,
+ 191, 0x11,
+ 197, 0x10
+};
+
+#define GAIN_CNT (sizeof(fc0013_lna_gains) / sizeof(int) / 2)
+
+int fc0013_set_lna_gain(void *dev, int gain)
+{
+ int ret = 0;
+ unsigned int i;
+ uint8_t tmp = 0;
+
+ ret |= fc0013_readreg(dev, 0x14, &tmp);
+
+ /* mask bits off */
+ tmp &= 0xe0;
+
+ for (i = 0; i < GAIN_CNT; i++) {
+ if ((fc0013_lna_gains[i*2] >= gain) || (i+1 == GAIN_CNT)) {
+ tmp |= fc0013_lna_gains[i*2 + 1];
+ break;
+ }
+ }
+
+ /* set gain */
+ ret |= fc0013_writereg(dev, 0x14, tmp);
+
+ return ret;
+}
diff --git a/hardware/src/r820/src/tuner_fc2580.c b/hardware/src/r820/src/tuner_fc2580.c
new file mode 100644
index 0000000..d2eeba5
--- /dev/null
+++ b/hardware/src/r820/src/tuner_fc2580.c
@@ -0,0 +1,494 @@
+/*
+ * FCI FC2580 tuner driver, taken from the kernel driver that can be found
+ * on http://linux.terratec.de/tv_en.html
+ *
+ * This driver is a mess, and should be cleaned up/rewritten.
+ *
+ */
+
+#include <stdint.h>
+
+#include "rtlsdr_i2c.h"
+#include "tuner_fc2580.h"
+
+/* 16.384 MHz (at least on the Logilink VG0002A) */
+#define CRYSTAL_FREQ 16384000
+
+/* glue functions to rtl-sdr code */
+
+fc2580_fci_result_type fc2580_i2c_write(void *pTuner, unsigned char reg, unsigned char val)
+{
+ uint8_t data[2];
+
+ data[0] = reg;
+ data[1] = val;
+
+ if (rtlsdr_i2c_write_fn(pTuner, FC2580_I2C_ADDR, data, 2) < 0)
+ return FC2580_FCI_FAIL;
+
+ return FC2580_FCI_SUCCESS;
+}
+
+fc2580_fci_result_type fc2580_i2c_read(void *pTuner, unsigned char reg, unsigned char *read_data)
+{
+ uint8_t data = reg;
+
+ if (rtlsdr_i2c_write_fn(pTuner, FC2580_I2C_ADDR, &data, 1) < 0)
+ return FC2580_FCI_FAIL;
+
+ if (rtlsdr_i2c_read_fn(pTuner, FC2580_I2C_ADDR, &data, 1) < 0)
+ return FC2580_FCI_FAIL;
+
+ *read_data = data;
+
+ return FC2580_FCI_SUCCESS;
+}
+
+int
+fc2580_Initialize(
+ void *pTuner
+ )
+{
+ int AgcMode;
+ unsigned int CrystalFreqKhz;
+
+ //TODO set AGC mode
+ AgcMode = FC2580_AGC_EXTERNAL;
+
+ // Initialize tuner with AGC mode.
+ // Note: CrystalFreqKhz = round(CrystalFreqHz / 1000)
+ CrystalFreqKhz = (unsigned int)((CRYSTAL_FREQ + 500) / 1000);
+
+ if(fc2580_set_init(pTuner, AgcMode, CrystalFreqKhz) != FC2580_FCI_SUCCESS)
+ goto error_status_initialize_tuner;
+
+
+ return FUNCTION_SUCCESS;
+
+
+error_status_initialize_tuner:
+ return FUNCTION_ERROR;
+}
+
+int
+fc2580_SetRfFreqHz(
+ void *pTuner,
+ unsigned long RfFreqHz
+ )
+{
+ unsigned int RfFreqKhz;
+ unsigned int CrystalFreqKhz;
+
+ // Set tuner RF frequency in KHz.
+ // Note: RfFreqKhz = round(RfFreqHz / 1000)
+ // CrystalFreqKhz = round(CrystalFreqHz / 1000)
+ RfFreqKhz = (unsigned int)((RfFreqHz + 500) / 1000);
+ CrystalFreqKhz = (unsigned int)((CRYSTAL_FREQ + 500) / 1000);
+
+ if(fc2580_set_freq(pTuner, RfFreqKhz, CrystalFreqKhz) != FC2580_FCI_SUCCESS)
+ goto error_status_set_tuner_rf_frequency;
+
+ return FUNCTION_SUCCESS;
+
+error_status_set_tuner_rf_frequency:
+ return FUNCTION_ERROR;
+}
+
+/**
+
+@brief Set FC2580 tuner bandwidth mode.
+
+*/
+int
+fc2580_SetBandwidthMode(
+ void *pTuner,
+ int BandwidthMode
+ )
+{
+ unsigned int CrystalFreqKhz;
+
+ // Set tuner bandwidth mode.
+ // Note: CrystalFreqKhz = round(CrystalFreqHz / 1000)
+ CrystalFreqKhz = (unsigned int)((CRYSTAL_FREQ + 500) / 1000);
+
+ if(fc2580_set_filter(pTuner, (unsigned char)BandwidthMode, CrystalFreqKhz) != FC2580_FCI_SUCCESS)
+ goto error_status_set_tuner_bandwidth_mode;
+
+ return FUNCTION_SUCCESS;
+
+
+error_status_set_tuner_bandwidth_mode:
+ return FUNCTION_ERROR;
+}
+
+void fc2580_wait_msec(void *pTuner, int a)
+{
+ /* USB latency is enough for now ;) */
+// usleep(a * 1000);
+ return;
+}
+
+/*==============================================================================
+ fc2580 initial setting
+
+ This function is a generic function which gets called to initialize
+
+ fc2580 in DVB-H mode or L-Band TDMB mode
+
+ <input parameter>
+
+ ifagc_mode
+ type : integer
+ 1 : Internal AGC
+ 2 : Voltage Control Mode
+
+==============================================================================*/
+fc2580_fci_result_type fc2580_set_init( void *pTuner, int ifagc_mode, unsigned int freq_xtal )
+{
+ fc2580_fci_result_type result = FC2580_FCI_SUCCESS;
+
+ result &= fc2580_i2c_write(pTuner, 0x00, 0x00); /*** Confidential ***/
+ result &= fc2580_i2c_write(pTuner, 0x12, 0x86);
+ result &= fc2580_i2c_write(pTuner, 0x14, 0x5C);
+ result &= fc2580_i2c_write(pTuner, 0x16, 0x3C);
+ result &= fc2580_i2c_write(pTuner, 0x1F, 0xD2);
+ result &= fc2580_i2c_write(pTuner, 0x09, 0xD7);
+ result &= fc2580_i2c_write(pTuner, 0x0B, 0xD5);
+ result &= fc2580_i2c_write(pTuner, 0x0C, 0x32);
+ result &= fc2580_i2c_write(pTuner, 0x0E, 0x43);
+ result &= fc2580_i2c_write(pTuner, 0x21, 0x0A);
+ result &= fc2580_i2c_write(pTuner, 0x22, 0x82);
+ if( ifagc_mode == 1 )
+ {
+ result &= fc2580_i2c_write(pTuner, 0x45, 0x10); //internal AGC
+ result &= fc2580_i2c_write(pTuner, 0x4C, 0x00); //HOLD_AGC polarity
+ }
+ else if( ifagc_mode == 2 )
+ {
+ result &= fc2580_i2c_write(pTuner, 0x45, 0x20); //Voltage Control Mode
+ result &= fc2580_i2c_write(pTuner, 0x4C, 0x02); //HOLD_AGC polarity
+ }
+ result &= fc2580_i2c_write(pTuner, 0x3F, 0x88);
+ result &= fc2580_i2c_write(pTuner, 0x02, 0x0E);
+ result &= fc2580_i2c_write(pTuner, 0x58, 0x14);
+ result &= fc2580_set_filter(pTuner, 8, freq_xtal); //BW = 7.8MHz
+
+ return result;
+}
+
+
+/*==============================================================================
+ fc2580 frequency setting
+
+ This function is a generic function which gets called to change LO Frequency
+
+ of fc2580 in DVB-H mode or L-Band TDMB mode
+
+ <input parameter>
+ freq_xtal: kHz
+
+ f_lo
+ Value of target LO Frequency in 'kHz' unit
+ ex) 2.6GHz = 2600000
+
+==============================================================================*/
+fc2580_fci_result_type fc2580_set_freq( void *pTuner, unsigned int f_lo, unsigned int freq_xtal )
+{
+ unsigned int f_diff, f_diff_shifted, n_val, k_val;
+ unsigned int f_vco, r_val, f_comp;
+ unsigned char pre_shift_bits = 4;// number of preshift to prevent overflow in shifting f_diff to f_diff_shifted
+ unsigned char data_0x18;
+ unsigned char data_0x02 = (USE_EXT_CLK<<5)|0x0E;
+
+ fc2580_band_type band = ( f_lo > 1000000 )? FC2580_L_BAND : ( f_lo > 400000 )? FC2580_UHF_BAND : FC2580_VHF_BAND;
+
+ fc2580_fci_result_type result = FC2580_FCI_SUCCESS;
+
+ f_vco = ( band == FC2580_UHF_BAND )? f_lo * 4 : (( band == FC2580_L_BAND )? f_lo * 2 : f_lo * 12);
+ r_val = ( f_vco >= 2*76*freq_xtal )? 1 : ( f_vco >= 76*freq_xtal )? 2 : 4;
+ f_comp = freq_xtal/r_val;
+ n_val = ( f_vco / 2 ) / f_comp;
+
+ f_diff = f_vco - 2* f_comp * n_val;
+ f_diff_shifted = f_diff << ( 20 - pre_shift_bits );
+ k_val = f_diff_shifted / ( ( 2* f_comp ) >> pre_shift_bits );
+
+ if( f_diff_shifted - k_val * ( ( 2* f_comp ) >> pre_shift_bits ) >= ( f_comp >> pre_shift_bits ) )
+ k_val = k_val + 1;
+
+ if( f_vco >= BORDER_FREQ ) //Select VCO Band
+ data_0x02 = data_0x02 | 0x08; //0x02[3] = 1;
+ else
+ data_0x02 = data_0x02 & 0xF7; //0x02[3] = 0;
+
+// if( band != curr_band ) {
+ switch(band)
+ {
+ case FC2580_UHF_BAND:
+ data_0x02 = (data_0x02 & 0x3F);
+
+ result &= fc2580_i2c_write(pTuner, 0x25, 0xF0);
+ result &= fc2580_i2c_write(pTuner, 0x27, 0x77);
+ result &= fc2580_i2c_write(pTuner, 0x28, 0x53);
+ result &= fc2580_i2c_write(pTuner, 0x29, 0x60);
+ result &= fc2580_i2c_write(pTuner, 0x30, 0x09);
+ result &= fc2580_i2c_write(pTuner, 0x50, 0x8C);
+ result &= fc2580_i2c_write(pTuner, 0x53, 0x50);
+
+ if( f_lo < 538000 )
+ result &= fc2580_i2c_write(pTuner, 0x5F, 0x13);
+ else
+ result &= fc2580_i2c_write(pTuner, 0x5F, 0x15);
+
+ if( f_lo < 538000 )
+ {
+ result &= fc2580_i2c_write(pTuner, 0x61, 0x07);
+ result &= fc2580_i2c_write(pTuner, 0x62, 0x06);
+ result &= fc2580_i2c_write(pTuner, 0x67, 0x06);
+ result &= fc2580_i2c_write(pTuner, 0x68, 0x08);
+ result &= fc2580_i2c_write(pTuner, 0x69, 0x10);
+ result &= fc2580_i2c_write(pTuner, 0x6A, 0x12);
+ }
+ else if( f_lo < 794000 )
+ {
+ result &= fc2580_i2c_write(pTuner, 0x61, 0x03);
+ result &= fc2580_i2c_write(pTuner, 0x62, 0x03);
+ result &= fc2580_i2c_write(pTuner, 0x67, 0x03); //ACI improve
+ result &= fc2580_i2c_write(pTuner, 0x68, 0x05); //ACI improve
+ result &= fc2580_i2c_write(pTuner, 0x69, 0x0C);
+ result &= fc2580_i2c_write(pTuner, 0x6A, 0x0E);
+ }
+ else
+ {
+ result &= fc2580_i2c_write(pTuner, 0x61, 0x07);
+ result &= fc2580_i2c_write(pTuner, 0x62, 0x06);
+ result &= fc2580_i2c_write(pTuner, 0x67, 0x07);
+ result &= fc2580_i2c_write(pTuner, 0x68, 0x09);
+ result &= fc2580_i2c_write(pTuner, 0x69, 0x10);
+ result &= fc2580_i2c_write(pTuner, 0x6A, 0x12);
+ }
+
+ result &= fc2580_i2c_write(pTuner, 0x63, 0x15);
+
+ result &= fc2580_i2c_write(pTuner, 0x6B, 0x0B);
+ result &= fc2580_i2c_write(pTuner, 0x6C, 0x0C);
+ result &= fc2580_i2c_write(pTuner, 0x6D, 0x78);
+ result &= fc2580_i2c_write(pTuner, 0x6E, 0x32);
+ result &= fc2580_i2c_write(pTuner, 0x6F, 0x14);
+ result &= fc2580_set_filter(pTuner, 8, freq_xtal); //BW = 7.8MHz
+ break;
+ case FC2580_VHF_BAND:
+ data_0x02 = (data_0x02 & 0x3F) | 0x80;
+ result &= fc2580_i2c_write(pTuner, 0x27, 0x77);
+ result &= fc2580_i2c_write(pTuner, 0x28, 0x33);
+ result &= fc2580_i2c_write(pTuner, 0x29, 0x40);
+ result &= fc2580_i2c_write(pTuner, 0x30, 0x09);
+ result &= fc2580_i2c_write(pTuner, 0x50, 0x8C);
+ result &= fc2580_i2c_write(pTuner, 0x53, 0x50);
+ result &= fc2580_i2c_write(pTuner, 0x5F, 0x0F);
+ result &= fc2580_i2c_write(pTuner, 0x61, 0x07);
+ result &= fc2580_i2c_write(pTuner, 0x62, 0x00);
+ result &= fc2580_i2c_write(pTuner, 0x63, 0x15);
+ result &= fc2580_i2c_write(pTuner, 0x67, 0x03);
+ result &= fc2580_i2c_write(pTuner, 0x68, 0x05);
+ result &= fc2580_i2c_write(pTuner, 0x69, 0x10);
+ result &= fc2580_i2c_write(pTuner, 0x6A, 0x12);
+ result &= fc2580_i2c_write(pTuner, 0x6B, 0x08);
+ result &= fc2580_i2c_write(pTuner, 0x6C, 0x0A);
+ result &= fc2580_i2c_write(pTuner, 0x6D, 0x78);
+ result &= fc2580_i2c_write(pTuner, 0x6E, 0x32);
+ result &= fc2580_i2c_write(pTuner, 0x6F, 0x54);
+ result &= fc2580_set_filter(pTuner, 7, freq_xtal); //BW = 6.8MHz
+ break;
+ case FC2580_L_BAND:
+ data_0x02 = (data_0x02 & 0x3F) | 0x40;
+ result &= fc2580_i2c_write(pTuner, 0x2B, 0x70);
+ result &= fc2580_i2c_write(pTuner, 0x2C, 0x37);
+ result &= fc2580_i2c_write(pTuner, 0x2D, 0xE7);
+ result &= fc2580_i2c_write(pTuner, 0x30, 0x09);
+ result &= fc2580_i2c_write(pTuner, 0x44, 0x20);
+ result &= fc2580_i2c_write(pTuner, 0x50, 0x8C);
+ result &= fc2580_i2c_write(pTuner, 0x53, 0x50);
+ result &= fc2580_i2c_write(pTuner, 0x5F, 0x0F);
+ result &= fc2580_i2c_write(pTuner, 0x61, 0x0F);
+ result &= fc2580_i2c_write(pTuner, 0x62, 0x00);
+ result &= fc2580_i2c_write(pTuner, 0x63, 0x13);
+ result &= fc2580_i2c_write(pTuner, 0x67, 0x00);
+ result &= fc2580_i2c_write(pTuner, 0x68, 0x02);
+ result &= fc2580_i2c_write(pTuner, 0x69, 0x0C);
+ result &= fc2580_i2c_write(pTuner, 0x6A, 0x0E);
+ result &= fc2580_i2c_write(pTuner, 0x6B, 0x08);
+ result &= fc2580_i2c_write(pTuner, 0x6C, 0x0A);
+ result &= fc2580_i2c_write(pTuner, 0x6D, 0xA0);
+ result &= fc2580_i2c_write(pTuner, 0x6E, 0x50);
+ result &= fc2580_i2c_write(pTuner, 0x6F, 0x14);
+ result &= fc2580_set_filter(pTuner, 1, freq_xtal); //BW = 1.53MHz
+ break;
+ default:
+ break;
+ }
+// curr_band = band;
+// }
+
+ //A command about AGC clock's pre-divide ratio
+ if( freq_xtal >= 28000 )
+ result &= fc2580_i2c_write(pTuner, 0x4B, 0x22 );
+
+ //Commands about VCO Band and PLL setting.
+ result &= fc2580_i2c_write(pTuner, 0x02, data_0x02);
+ data_0x18 = ( ( r_val == 1 )? 0x00 : ( ( r_val == 2 )? 0x10 : 0x20 ) ) + (unsigned char)(k_val >> 16);
+ result &= fc2580_i2c_write(pTuner, 0x18, data_0x18); //Load 'R' value and high part of 'K' values
+ result &= fc2580_i2c_write(pTuner, 0x1A, (unsigned char)( k_val >> 8 ) ); //Load middle part of 'K' value
+ result &= fc2580_i2c_write(pTuner, 0x1B, (unsigned char)( k_val ) ); //Load lower part of 'K' value
+ result &= fc2580_i2c_write(pTuner, 0x1C, (unsigned char)( n_val ) ); //Load 'N' value
+
+ //A command about UHF LNA Load Cap
+ if( band == FC2580_UHF_BAND )
+ result &= fc2580_i2c_write(pTuner, 0x2D, ( f_lo <= (unsigned int)794000 )? 0x9F : 0x8F ); //LNA_OUT_CAP
+
+
+ return result;
+}
+
+
+/*==============================================================================
+ fc2580 filter BW setting
+
+ This function is a generic function which gets called to change Bandwidth
+
+ frequency of fc2580's channel selection filter
+
+ <input parameter>
+ freq_xtal: kHz
+
+ filter_bw
+ 1 : 1.53MHz(TDMB)
+ 6 : 6MHz (Bandwidth 6MHz)
+ 7 : 6.8MHz (Bandwidth 7MHz)
+ 8 : 7.8MHz (Bandwidth 8MHz)
+
+
+==============================================================================*/
+fc2580_fci_result_type fc2580_set_filter( void *pTuner, unsigned char filter_bw, unsigned int freq_xtal )
+{
+ unsigned char cal_mon = 0, i;
+ fc2580_fci_result_type result = FC2580_FCI_SUCCESS;
+
+ if(filter_bw == 1)
+ {
+ result &= fc2580_i2c_write(pTuner, 0x36, 0x1C);
+ result &= fc2580_i2c_write(pTuner, 0x37, (unsigned char)(4151*freq_xtal/1000000) );
+ result &= fc2580_i2c_write(pTuner, 0x39, 0x00);
+ result &= fc2580_i2c_write(pTuner, 0x2E, 0x09);
+ }
+ if(filter_bw == 6)
+ {
+ result &= fc2580_i2c_write(pTuner, 0x36, 0x18);
+ result &= fc2580_i2c_write(pTuner, 0x37, (unsigned char)(4400*freq_xtal/1000000) );
+ result &= fc2580_i2c_write(pTuner, 0x39, 0x00);
+ result &= fc2580_i2c_write(pTuner, 0x2E, 0x09);
+ }
+ else if(filter_bw == 7)
+ {
+ result &= fc2580_i2c_write(pTuner, 0x36, 0x18);
+ result &= fc2580_i2c_write(pTuner, 0x37, (unsigned char)(3910*freq_xtal/1000000) );
+ result &= fc2580_i2c_write(pTuner, 0x39, 0x80);
+ result &= fc2580_i2c_write(pTuner, 0x2E, 0x09);
+ }
+ else if(filter_bw == 8)
+ {
+ result &= fc2580_i2c_write(pTuner, 0x36, 0x18);
+ result &= fc2580_i2c_write(pTuner, 0x37, (unsigned char)(3300*freq_xtal/1000000) );
+ result &= fc2580_i2c_write(pTuner, 0x39, 0x80);
+ result &= fc2580_i2c_write(pTuner, 0x2E, 0x09);
+ }
+
+
+ for(i=0; i<5; i++)
+ {
+ fc2580_wait_msec(pTuner, 5);//wait 5ms
+ result &= fc2580_i2c_read(pTuner, 0x2F, &cal_mon);
+ if( (cal_mon & 0xC0) != 0xC0)
+ {
+ result &= fc2580_i2c_write(pTuner, 0x2E, 0x01);
+ result &= fc2580_i2c_write(pTuner, 0x2E, 0x09);
+ }
+ else
+ break;
+ }
+
+ result &= fc2580_i2c_write(pTuner, 0x2E, 0x01);
+
+ return result;
+}
+
+/*==============================================================================
+ fc2580 RSSI function
+
+ This function is a generic function which returns fc2580's
+
+ current RSSI value.
+
+ <input parameter>
+ none
+
+ <return value>
+ int
+ rssi : estimated input power.
+
+==============================================================================*/
+//int fc2580_get_rssi(void) {
+//
+// unsigned char s_lna, s_rfvga, s_cfs, s_ifvga;
+// int ofs_lna, ofs_rfvga, ofs_csf, ofs_ifvga, rssi;
+//
+// fc2580_i2c_read(0x71, &s_lna );
+// fc2580_i2c_read(0x72, &s_rfvga );
+// fc2580_i2c_read(0x73, &s_cfs );
+// fc2580_i2c_read(0x74, &s_ifvga );
+//
+//
+// ofs_lna =
+// (curr_band==FC2580_UHF_BAND)?
+// (s_lna==0)? 0 :
+// (s_lna==1)? -6 :
+// (s_lna==2)? -17 :
+// (s_lna==3)? -22 : -30 :
+// (curr_band==FC2580_VHF_BAND)?
+// (s_lna==0)? 0 :
+// (s_lna==1)? -6 :
+// (s_lna==2)? -19 :
+// (s_lna==3)? -24 : -32 :
+// (curr_band==FC2580_L_BAND)?
+// (s_lna==0)? 0 :
+// (s_lna==1)? -6 :
+// (s_lna==2)? -11 :
+// (s_lna==3)? -16 : -34 :
+// 0;//FC2580_NO_BAND
+// ofs_rfvga = -s_rfvga+((s_rfvga>=11)? 1 : 0) + ((s_rfvga>=18)? 1 : 0);
+// ofs_csf = -6*s_cfs;
+// ofs_ifvga = s_ifvga/4;
+//
+// return rssi = ofs_lna+ofs_rfvga+ofs_csf+ofs_ifvga+OFS_RSSI;
+//
+//}
+
+/*==============================================================================
+ fc2580 Xtal frequency Setting
+
+ This function is a generic function which sets
+
+ the frequency of xtal.
+
+ <input parameter>
+
+ frequency
+ frequency value of internal(external) Xtal(clock) in kHz unit.
+
+==============================================================================*/
+//void fc2580_set_freq_xtal(unsigned int frequency) {
+//
+// freq_xtal = frequency;
+//
+//}
+
diff --git a/hardware/src/r820/src/tuner_r82xx.c b/hardware/src/r820/src/tuner_r82xx.c
new file mode 100644
index 0000000..997abd7
--- /dev/null
+++ b/hardware/src/r820/src/tuner_r82xx.c
@@ -0,0 +1,1274 @@
+/*
+ * Rafael Micro R820T/R828D driver
+ *
+ * Copyright (C) 2013 Mauro Carvalho Chehab <mchehab@redhat.com>
+ * Copyright (C) 2013 Steve Markgraf <steve@steve-m.de>
+ *
+ * This driver is a heavily modified version of the driver found in the
+ * Linux kernel:
+ * http://git.linuxtv.org/linux-2.6.git/history/HEAD:/drivers/media/tuners/r820t.c
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <stdio.h>
+#include <stdint.h>
+#include <string.h>
+
+#include "rtlsdr_i2c.h"
+#include "tuner_r82xx.h"
+
+#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
+#define MHZ(x) ((x)*1000*1000)
+#define KHZ(x) ((x)*1000)
+
+/*
+ * Static constants
+ */
+
+/* Those initial values start from REG_SHADOW_START */
+static const uint8_t r82xx_init_array[NUM_REGS] = {
+ 0x83, 0x32, 0x75, /* 05 to 07 */
+ 0xc0, 0x40, 0xd6, 0x6c, /* 08 to 0b */
+ 0xf5, 0x63, 0x75, 0x68, /* 0c to 0f */
+ 0x6c, 0x83, 0x80, 0x00, /* 10 to 13 */
+ 0x0f, 0x00, 0xc0, 0x30, /* 14 to 17 */
+ 0x48, 0xcc, 0x60, 0x00, /* 18 to 1b */
+ 0x54, 0xae, 0x4a, 0xc0 /* 1c to 1f */
+};
+
+/* Tuner frequency ranges */
+static const struct r82xx_freq_range freq_ranges[] = {
+ {
+ /* .freq = */ 0, /* Start freq, in MHz */
+ /* .open_d = */ 0x08, /* low */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0xdf, /* R27[7:0] band2,band0 */
+ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */
+ /* .xtal_cap10p = */ 0x01,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 50, /* Start freq, in MHz */
+ /* .open_d = */ 0x08, /* low */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0xbe, /* R27[7:0] band4,band1 */
+ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */
+ /* .xtal_cap10p = */ 0x01,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 55, /* Start freq, in MHz */
+ /* .open_d = */ 0x08, /* low */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x8b, /* R27[7:0] band7,band4 */
+ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */
+ /* .xtal_cap10p = */ 0x01,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 60, /* Start freq, in MHz */
+ /* .open_d = */ 0x08, /* low */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x7b, /* R27[7:0] band8,band4 */
+ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */
+ /* .xtal_cap10p = */ 0x01,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 65, /* Start freq, in MHz */
+ /* .open_d = */ 0x08, /* low */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x69, /* R27[7:0] band9,band6 */
+ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */
+ /* .xtal_cap10p = */ 0x01,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 70, /* Start freq, in MHz */
+ /* .open_d = */ 0x08, /* low */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x58, /* R27[7:0] band10,band7 */
+ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */
+ /* .xtal_cap10p = */ 0x01,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 75, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x44, /* R27[7:0] band11,band11 */
+ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */
+ /* .xtal_cap10p = */ 0x01,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 80, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x44, /* R27[7:0] band11,band11 */
+ /* .xtal_cap20p = */ 0x02, /* R16[1:0] 20pF (10) */
+ /* .xtal_cap10p = */ 0x01,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 90, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x34, /* R27[7:0] band12,band11 */
+ /* .xtal_cap20p = */ 0x01, /* R16[1:0] 10pF (01) */
+ /* .xtal_cap10p = */ 0x01,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 100, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x34, /* R27[7:0] band12,band11 */
+ /* .xtal_cap20p = */ 0x01, /* R16[1:0] 10pF (01) */
+ /* .xtal_cap10p = */ 0x01,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 110, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x24, /* R27[7:0] band13,band11 */
+ /* .xtal_cap20p = */ 0x01, /* R16[1:0] 10pF (01) */
+ /* .xtal_cap10p = */ 0x01,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 120, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x24, /* R27[7:0] band13,band11 */
+ /* .xtal_cap20p = */ 0x01, /* R16[1:0] 10pF (01) */
+ /* .xtal_cap10p = */ 0x01,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 140, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x14, /* R27[7:0] band14,band11 */
+ /* .xtal_cap20p = */ 0x01, /* R16[1:0] 10pF (01) */
+ /* .xtal_cap10p = */ 0x01,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 180, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x13, /* R27[7:0] band14,band12 */
+ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */
+ /* .xtal_cap10p = */ 0x00,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 220, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x13, /* R27[7:0] band14,band12 */
+ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */
+ /* .xtal_cap10p = */ 0x00,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 250, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x11, /* R27[7:0] highest,highest */
+ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */
+ /* .xtal_cap10p = */ 0x00,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 280, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
+ /* .tf_c = */ 0x00, /* R27[7:0] highest,highest */
+ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */
+ /* .xtal_cap10p = */ 0x00,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 310, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x41, /* R26[7:6]=1 (bypass) R26[1:0]=1 (middle) */
+ /* .tf_c = */ 0x00, /* R27[7:0] highest,highest */
+ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */
+ /* .xtal_cap10p = */ 0x00,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 450, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x41, /* R26[7:6]=1 (bypass) R26[1:0]=1 (middle) */
+ /* .tf_c = */ 0x00, /* R27[7:0] highest,highest */
+ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */
+ /* .xtal_cap10p = */ 0x00,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 588, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x40, /* R26[7:6]=1 (bypass) R26[1:0]=0 (highest) */
+ /* .tf_c = */ 0x00, /* R27[7:0] highest,highest */
+ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */
+ /* .xtal_cap10p = */ 0x00,
+ /* .xtal_cap0p = */ 0x00,
+ }, {
+ /* .freq = */ 650, /* Start freq, in MHz */
+ /* .open_d = */ 0x00, /* high */
+ /* .rf_mux_ploy = */ 0x40, /* R26[7:6]=1 (bypass) R26[1:0]=0 (highest) */
+ /* .tf_c = */ 0x00, /* R27[7:0] highest,highest */
+ /* .xtal_cap20p = */ 0x00, /* R16[1:0] 0pF (00) */
+ /* .xtal_cap10p = */ 0x00,
+ /* .xtal_cap0p = */ 0x00,
+ }
+};
+
+static int r82xx_xtal_capacitor[][2] = {
+ { 0x0b, XTAL_LOW_CAP_30P },
+ { 0x02, XTAL_LOW_CAP_20P },
+ { 0x01, XTAL_LOW_CAP_10P },
+ { 0x00, XTAL_LOW_CAP_0P },
+ { 0x10, XTAL_HIGH_CAP_0P },
+};
+
+/*
+ * I2C read/write code and shadow registers logic
+ */
+static void shadow_store(struct r82xx_priv *priv, uint8_t reg, const uint8_t *val,
+ int len)
+{
+ int r = reg - REG_SHADOW_START;
+
+ if (r < 0) {
+ len += r;
+ r = 0;
+ }
+ if (len <= 0)
+ return;
+ if (len > NUM_REGS - r)
+ len = NUM_REGS - r;
+
+ memcpy(&priv->regs[r], val, len);
+}
+
+static int r82xx_write(struct r82xx_priv *priv, uint8_t reg, const uint8_t *val,
+ unsigned int len)
+{
+ int rc, size, pos = 0;
+
+ /* Store the shadow registers */
+ shadow_store(priv, reg, val, len);
+
+ do {
+ if (len > priv->cfg->max_i2c_msg_len - 1)
+ size = priv->cfg->max_i2c_msg_len - 1;
+ else
+ size = len;
+
+ /* Fill I2C buffer */
+ priv->buf[0] = reg;
+ memcpy(&priv->buf[1], &val[pos], size);
+
+ rc = rtlsdr_i2c_write_fn(priv->rtl_dev, priv->cfg->i2c_addr,
+ priv->buf, size + 1);
+
+ if (rc != size + 1) {
+ fprintf(stderr, "%s: i2c wr failed=%d reg=%02x len=%d\n",
+ __FUNCTION__, rc, reg, size);
+ if (rc < 0)
+ return rc;
+ return -1;
+ }
+
+ reg += size;
+ len -= size;
+ pos += size;
+ } while (len > 0);
+
+ return 0;
+}
+
+static int r82xx_write_reg(struct r82xx_priv *priv, uint8_t reg, uint8_t val)
+{
+ return r82xx_write(priv, reg, &val, 1);
+}
+
+static int r82xx_read_cache_reg(struct r82xx_priv *priv, int reg)
+{
+ reg -= REG_SHADOW_START;
+
+ if (reg >= 0 && reg < NUM_REGS)
+ return priv->regs[reg];
+ else
+ return -1;
+}
+
+static int r82xx_write_reg_mask(struct r82xx_priv *priv, uint8_t reg, uint8_t val,
+ uint8_t bit_mask)
+{
+ int rc = r82xx_read_cache_reg(priv, reg);
+
+ if (rc < 0)
+ return rc;
+
+ val = (rc & ~bit_mask) | (val & bit_mask);
+
+ return r82xx_write(priv, reg, &val, 1);
+}
+
+static uint8_t r82xx_bitrev(uint8_t byte)
+{
+ const uint8_t lut[16] = { 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
+ 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf };
+
+ return (lut[byte & 0xf] << 4) | lut[byte >> 4];
+}
+
+static int r82xx_read(struct r82xx_priv *priv, uint8_t reg, uint8_t *val, int len)
+{
+ int rc, i;
+ uint8_t *p = &priv->buf[1];
+
+ priv->buf[0] = reg;
+
+ rc = rtlsdr_i2c_write_fn(priv->rtl_dev, priv->cfg->i2c_addr, priv->buf, 1);
+
+ if (rc != 1) {
+ fprintf(stderr, "%s: i2c wr failed=%d reg=%02x len=%d\n",
+ __FUNCTION__, rc, reg, 1);
+ if (rc < 0)
+ return rc;
+ return -1;
+ }
+
+ rc = rtlsdr_i2c_read_fn(priv->rtl_dev, priv->cfg->i2c_addr, p, len);
+
+ if (rc != len) {
+ fprintf(stderr, "%s: i2c rd failed=%d reg=%02x len=%d\n",
+ __FUNCTION__, rc, reg, len);
+ if (rc < 0)
+ return rc;
+ return -1;
+ }
+
+ /* Copy data to the output buffer */
+ for (i = 0; i < len; i++)
+ val[i] = r82xx_bitrev(p[i]);
+
+ return 0;
+}
+
+/*
+ * r82xx tuning logic
+ */
+
+static int r82xx_set_mux(struct r82xx_priv *priv, uint32_t freq)
+{
+ const struct r82xx_freq_range *range;
+ int rc;
+ unsigned int i;
+ uint8_t val;
+
+ /* Get the proper frequency range */
+ freq = freq / 1000000;
+ for (i = 0; i < ARRAY_SIZE(freq_ranges) - 1; i++) {
+ if (freq < freq_ranges[i + 1].freq)
+ break;
+ }
+ range = &freq_ranges[i];
+
+ /* Open Drain */
+ rc = r82xx_write_reg_mask(priv, 0x17, range->open_d, 0x08);
+ if (rc < 0)
+ return rc;
+
+ /* RF_MUX,Polymux */
+ rc = r82xx_write_reg_mask(priv, 0x1a, range->rf_mux_ploy, 0xc3);
+ if (rc < 0)
+ return rc;
+
+ /* TF BAND */
+ rc = r82xx_write_reg(priv, 0x1b, range->tf_c);
+ if (rc < 0)
+ return rc;
+
+ /* XTAL CAP & Drive */
+ switch (priv->xtal_cap_sel) {
+ case XTAL_LOW_CAP_30P:
+ case XTAL_LOW_CAP_20P:
+ val = range->xtal_cap20p | 0x08;
+ break;
+ case XTAL_LOW_CAP_10P:
+ val = range->xtal_cap10p | 0x08;
+ break;
+ case XTAL_HIGH_CAP_0P:
+ val = range->xtal_cap0p | 0x00;
+ break;
+ default:
+ case XTAL_LOW_CAP_0P:
+ val = range->xtal_cap0p | 0x08;
+ break;
+ }
+ rc = r82xx_write_reg_mask(priv, 0x10, val, 0x0b);
+ if (rc < 0)
+ return rc;
+
+ rc = r82xx_write_reg_mask(priv, 0x08, 0x00, 0x3f);
+ if (rc < 0)
+ return rc;
+
+ rc = r82xx_write_reg_mask(priv, 0x09, 0x00, 0x3f);
+
+ return rc;
+}
+
+static int r82xx_set_pll(struct r82xx_priv *priv, uint32_t freq)
+{
+ int rc, i;
+ unsigned sleep_time = 10000;
+ uint64_t vco_freq;
+ uint32_t vco_fra; /* VCO contribution by SDM (kHz) */
+ uint32_t vco_min = 1770000;
+ uint32_t vco_max = vco_min * 2;
+ uint32_t freq_khz, pll_ref, pll_ref_khz;
+ uint16_t n_sdm = 2;
+ uint16_t sdm = 0;
+ uint8_t mix_div = 2;
+ uint8_t div_buf = 0;
+ uint8_t div_num = 0;
+ uint8_t vco_power_ref = 2;
+ uint8_t refdiv2 = 0;
+ uint8_t ni, si, nint, vco_fine_tune, val;
+ uint8_t data[5];
+
+ /* Frequency in kHz */
+ freq_khz = (freq + 500) / 1000;
+ pll_ref = priv->cfg->xtal;
+ pll_ref_khz = (priv->cfg->xtal + 500) / 1000;
+
+ rc = r82xx_write_reg_mask(priv, 0x10, refdiv2, 0x10);
+ if (rc < 0)
+ return rc;
+
+ /* set pll autotune = 128kHz */
+ rc = r82xx_write_reg_mask(priv, 0x1a, 0x00, 0x0c);
+ if (rc < 0)
+ return rc;
+
+ /* set VCO current = 100 */
+ rc = r82xx_write_reg_mask(priv, 0x12, 0x80, 0xe0);
+ if (rc < 0)
+ return rc;
+
+ /* Calculate divider */
+ while (mix_div <= 64) {
+ if (((freq_khz * mix_div) >= vco_min) &&
+ ((freq_khz * mix_div) < vco_max)) {
+ div_buf = mix_div;
+ while (div_buf > 2) {
+ div_buf = div_buf >> 1;
+ div_num++;
+ }
+ break;
+ }
+ mix_div = mix_div << 1;
+ }
+
+ rc = r82xx_read(priv, 0x00, data, sizeof(data));
+ if (rc < 0)
+ return rc;
+
+ if (priv->cfg->rafael_chip == CHIP_R828D)
+ vco_power_ref = 1;
+
+ vco_fine_tune = (data[4] & 0x30) >> 4;
+
+ if (vco_fine_tune > vco_power_ref)
+ div_num = div_num - 1;
+ else if (vco_fine_tune < vco_power_ref)
+ div_num = div_num + 1;
+
+ rc = r82xx_write_reg_mask(priv, 0x10, div_num << 5, 0xe0);
+ if (rc < 0)
+ return rc;
+
+ vco_freq = (uint64_t)freq * (uint64_t)mix_div;
+ nint = vco_freq / (2 * pll_ref);
+ vco_fra = (vco_freq - 2 * pll_ref * nint) / 1000;
+
+ if (nint > ((128 / vco_power_ref) - 1)) {
+ fprintf(stderr, "[R82XX] No valid PLL values for %u Hz!\n", freq);
+ return -1;
+ }
+
+ ni = (nint - 13) / 4;
+ si = nint - 4 * ni - 13;
+
+ rc = r82xx_write_reg(priv, 0x14, ni + (si << 6));
+ if (rc < 0)
+ return rc;
+
+ /* pw_sdm */
+ if (!vco_fra)
+ val = 0x08;
+ else
+ val = 0x00;
+
+ rc = r82xx_write_reg_mask(priv, 0x12, val, 0x08);
+ if (rc < 0)
+ return rc;
+
+ /* sdm calculator */
+ while (vco_fra > 1) {
+ if (vco_fra > (2 * pll_ref_khz / n_sdm)) {
+ sdm = sdm + 32768 / (n_sdm / 2);
+ vco_fra = vco_fra - 2 * pll_ref_khz / n_sdm;
+ if (n_sdm >= 0x8000)
+ break;
+ }
+ n_sdm <<= 1;
+ }
+
+ rc = r82xx_write_reg(priv, 0x16, sdm >> 8);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg(priv, 0x15, sdm & 0xff);
+ if (rc < 0)
+ return rc;
+
+ for (i = 0; i < 2; i++) {
+// usleep_range(sleep_time, sleep_time + 1000);
+
+ /* Check if PLL has locked */
+ rc = r82xx_read(priv, 0x00, data, 3);
+ if (rc < 0)
+ return rc;
+ if (data[2] & 0x40)
+ break;
+
+ if (!i) {
+ /* Didn't lock. Increase VCO current */
+ rc = r82xx_write_reg_mask(priv, 0x12, 0x60, 0xe0);
+ if (rc < 0)
+ return rc;
+ }
+ }
+
+ if (!(data[2] & 0x40)) {
+ fprintf(stderr, "[R82XX] PLL not locked!\n");
+ priv->has_lock = 0;
+ return 0;
+ }
+
+ priv->has_lock = 1;
+
+ /* set pll autotune = 8kHz */
+ rc = r82xx_write_reg_mask(priv, 0x1a, 0x08, 0x08);
+
+ return rc;
+}
+
+static int r82xx_sysfreq_sel(struct r82xx_priv *priv, uint32_t freq,
+ enum r82xx_tuner_type type,
+ uint32_t delsys)
+{
+ int rc;
+ uint8_t mixer_top, lna_top, cp_cur, div_buf_cur, lna_vth_l, mixer_vth_l;
+ uint8_t air_cable1_in, cable2_in, pre_dect, lna_discharge, filter_cur;
+
+ switch (delsys) {
+ case SYS_DVBT:
+ if ((freq == 506000000) || (freq == 666000000) ||
+ (freq == 818000000)) {
+ mixer_top = 0x14; /* mixer top:14 , top-1, low-discharge */
+ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
+ cp_cur = 0x28; /* 101, 0.2 */
+ div_buf_cur = 0x20; /* 10, 200u */
+ } else {
+ mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */
+ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
+ cp_cur = 0x38; /* 111, auto */
+ div_buf_cur = 0x30; /* 11, 150u */
+ }
+ lna_vth_l = 0x53; /* lna vth 0.84 , vtl 0.64 */
+ mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */
+ air_cable1_in = 0x00;
+ cable2_in = 0x00;
+ pre_dect = 0x40;
+ lna_discharge = 14;
+ filter_cur = 0x40; /* 10, low */
+ break;
+ case SYS_DVBT2:
+ mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */
+ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
+ lna_vth_l = 0x53; /* lna vth 0.84 , vtl 0.64 */
+ mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */
+ air_cable1_in = 0x00;
+ cable2_in = 0x00;
+ pre_dect = 0x40;
+ lna_discharge = 14;
+ cp_cur = 0x38; /* 111, auto */
+ div_buf_cur = 0x30; /* 11, 150u */
+ filter_cur = 0x40; /* 10, low */
+ break;
+ case SYS_ISDBT:
+ mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */
+ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
+ lna_vth_l = 0x75; /* lna vth 1.04 , vtl 0.84 */
+ mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */
+ air_cable1_in = 0x00;
+ cable2_in = 0x00;
+ pre_dect = 0x40;
+ lna_discharge = 14;
+ cp_cur = 0x38; /* 111, auto */
+ div_buf_cur = 0x30; /* 11, 150u */
+ filter_cur = 0x40; /* 10, low */
+ break;
+ default: /* DVB-T 8M */
+ mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */
+ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
+ lna_vth_l = 0x53; /* lna vth 0.84 , vtl 0.64 */
+ mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */
+ air_cable1_in = 0x00;
+ cable2_in = 0x00;
+ pre_dect = 0x40;
+ lna_discharge = 14;
+ cp_cur = 0x38; /* 111, auto */
+ div_buf_cur = 0x30; /* 11, 150u */
+ filter_cur = 0x40; /* 10, low */
+ break;
+ }
+
+ if (priv->cfg->use_predetect) {
+ rc = r82xx_write_reg_mask(priv, 0x06, pre_dect, 0x40);
+ if (rc < 0)
+ return rc;
+ }
+
+ rc = r82xx_write_reg_mask(priv, 0x1d, lna_top, 0xc7);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg_mask(priv, 0x1c, mixer_top, 0xf8);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg(priv, 0x0d, lna_vth_l);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg(priv, 0x0e, mixer_vth_l);
+ if (rc < 0)
+ return rc;
+
+ priv->input = air_cable1_in;
+
+ /* Air-IN only for Astrometa */
+ rc = r82xx_write_reg_mask(priv, 0x05, air_cable1_in, 0x60);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg_mask(priv, 0x06, cable2_in, 0x08);
+ if (rc < 0)
+ return rc;
+
+ rc = r82xx_write_reg_mask(priv, 0x11, cp_cur, 0x38);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg_mask(priv, 0x17, div_buf_cur, 0x30);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg_mask(priv, 0x0a, filter_cur, 0x60);
+ if (rc < 0)
+ return rc;
+
+ /*
+ * Set LNA
+ */
+
+ if (type != TUNER_ANALOG_TV) {
+ /* LNA TOP: lowest */
+ rc = r82xx_write_reg_mask(priv, 0x1d, 0, 0x38);
+ if (rc < 0)
+ return rc;
+
+ /* 0: normal mode */
+ rc = r82xx_write_reg_mask(priv, 0x1c, 0, 0x04);
+ if (rc < 0)
+ return rc;
+
+ /* 0: PRE_DECT off */
+ rc = r82xx_write_reg_mask(priv, 0x06, 0, 0x40);
+ if (rc < 0)
+ return rc;
+
+ /* agc clk 250hz */
+ rc = r82xx_write_reg_mask(priv, 0x1a, 0x30, 0x30);
+ if (rc < 0)
+ return rc;
+
+// msleep(250);
+
+ /* write LNA TOP = 3 */
+ rc = r82xx_write_reg_mask(priv, 0x1d, 0x18, 0x38);
+ if (rc < 0)
+ return rc;
+
+ /*
+ * write discharge mode
+ * FIXME: IMHO, the mask here is wrong, but it matches
+ * what's there at the original driver
+ */
+ rc = r82xx_write_reg_mask(priv, 0x1c, mixer_top, 0x04);
+ if (rc < 0)
+ return rc;
+
+ /* LNA discharge current */
+ rc = r82xx_write_reg_mask(priv, 0x1e, lna_discharge, 0x1f);
+ if (rc < 0)
+ return rc;
+
+ /* agc clk 60hz */
+ rc = r82xx_write_reg_mask(priv, 0x1a, 0x20, 0x30);
+ if (rc < 0)
+ return rc;
+ } else {
+ /* PRE_DECT off */
+ rc = r82xx_write_reg_mask(priv, 0x06, 0, 0x40);
+ if (rc < 0)
+ return rc;
+
+ /* write LNA TOP */
+ rc = r82xx_write_reg_mask(priv, 0x1d, lna_top, 0x38);
+ if (rc < 0)
+ return rc;
+
+ /*
+ * write discharge mode
+ * FIXME: IMHO, the mask here is wrong, but it matches
+ * what's there at the original driver
+ */
+ rc = r82xx_write_reg_mask(priv, 0x1c, mixer_top, 0x04);
+ if (rc < 0)
+ return rc;
+
+ /* LNA discharge current */
+ rc = r82xx_write_reg_mask(priv, 0x1e, lna_discharge, 0x1f);
+ if (rc < 0)
+ return rc;
+
+ /* agc clk 1Khz, external det1 cap 1u */
+ rc = r82xx_write_reg_mask(priv, 0x1a, 0x00, 0x30);
+ if (rc < 0)
+ return rc;
+
+ rc = r82xx_write_reg_mask(priv, 0x10, 0x00, 0x04);
+ if (rc < 0)
+ return rc;
+ }
+ return 0;
+}
+
+static int r82xx_set_tv_standard(struct r82xx_priv *priv,
+ unsigned bw,
+ enum r82xx_tuner_type type,
+ uint32_t delsys)
+
+{
+ int rc, i;
+ uint32_t if_khz, filt_cal_lo;
+ uint8_t data[5];
+ uint8_t filt_gain, img_r, filt_q, hp_cor, ext_enable, loop_through;
+ uint8_t lt_att, flt_ext_widest, polyfil_cur;
+ int need_calibration;
+
+ /* BW < 6 MHz */
+ if_khz = 3570;
+ filt_cal_lo = 56000; /* 52000->56000 */
+ filt_gain = 0x10; /* +3db, 6mhz on */
+ img_r = 0x00; /* image negative */
+ filt_q = 0x10; /* r10[4]:low q(1'b1) */
+ hp_cor = 0x6b; /* 1.7m disable, +2cap, 1.0mhz */
+ ext_enable = 0x60; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */
+ loop_through = 0x01; /* r5[7], lt off */
+ lt_att = 0x00; /* r31[7], lt att enable */
+ flt_ext_widest = 0x00; /* r15[7]: flt_ext_wide off */
+ polyfil_cur = 0x60; /* r25[6:5]:min */
+
+ /* Initialize the shadow registers */
+ memcpy(priv->regs, r82xx_init_array, sizeof(r82xx_init_array));
+
+ /* Init Flag & Xtal_check Result (inits VGA gain, needed?)*/
+ rc = r82xx_write_reg_mask(priv, 0x0c, 0x00, 0x0f);
+ if (rc < 0)
+ return rc;
+
+ /* version */
+ rc = r82xx_write_reg_mask(priv, 0x13, VER_NUM, 0x3f);
+ if (rc < 0)
+ return rc;
+
+ /* for LT Gain test */
+ if (type != TUNER_ANALOG_TV) {
+ rc = r82xx_write_reg_mask(priv, 0x1d, 0x00, 0x38);
+ if (rc < 0)
+ return rc;
+// usleep_range(1000, 2000);
+ }
+ priv->int_freq = if_khz * 1000;
+
+ /* Check if standard changed. If so, filter calibration is needed */
+ /* as we call this function only once in rtlsdr, force calibration */
+ need_calibration = 1;
+
+ if (need_calibration) {
+ for (i = 0; i < 2; i++) {
+ /* Set filt_cap */
+ rc = r82xx_write_reg_mask(priv, 0x0b, hp_cor, 0x60);
+ if (rc < 0)
+ return rc;
+
+ /* set cali clk =on */
+ rc = r82xx_write_reg_mask(priv, 0x0f, 0x04, 0x04);
+ if (rc < 0)
+ return rc;
+
+ /* X'tal cap 0pF for PLL */
+ rc = r82xx_write_reg_mask(priv, 0x10, 0x00, 0x03);
+ if (rc < 0)
+ return rc;
+
+ rc = r82xx_set_pll(priv, filt_cal_lo * 1000);
+ if (rc < 0 || !priv->has_lock)
+ return rc;
+
+ /* Start Trigger */
+ rc = r82xx_write_reg_mask(priv, 0x0b, 0x10, 0x10);
+ if (rc < 0)
+ return rc;
+
+// usleep_range(1000, 2000);
+
+ /* Stop Trigger */
+ rc = r82xx_write_reg_mask(priv, 0x0b, 0x00, 0x10);
+ if (rc < 0)
+ return rc;
+
+ /* set cali clk =off */
+ rc = r82xx_write_reg_mask(priv, 0x0f, 0x00, 0x04);
+ if (rc < 0)
+ return rc;
+
+ /* Check if calibration worked */
+ rc = r82xx_read(priv, 0x00, data, sizeof(data));
+ if (rc < 0)
+ return rc;
+
+ priv->fil_cal_code = data[4] & 0x0f;
+ if (priv->fil_cal_code && priv->fil_cal_code != 0x0f)
+ break;
+ }
+ /* narrowest */
+ if (priv->fil_cal_code == 0x0f)
+ priv->fil_cal_code = 0;
+ }
+
+ rc = r82xx_write_reg_mask(priv, 0x0a,
+ filt_q | priv->fil_cal_code, 0x1f);
+ if (rc < 0)
+ return rc;
+
+ /* Set BW, Filter_gain, & HP corner */
+ rc = r82xx_write_reg_mask(priv, 0x0b, hp_cor, 0xef);
+ if (rc < 0)
+ return rc;
+
+ /* Set Img_R */
+ rc = r82xx_write_reg_mask(priv, 0x07, img_r, 0x80);
+ if (rc < 0)
+ return rc;
+
+ /* Set filt_3dB, V6MHz */
+ rc = r82xx_write_reg_mask(priv, 0x06, filt_gain, 0x30);
+ if (rc < 0)
+ return rc;
+
+ /* channel filter extension */
+ rc = r82xx_write_reg_mask(priv, 0x1e, ext_enable, 0x60);
+ if (rc < 0)
+ return rc;
+
+ /* Loop through */
+ rc = r82xx_write_reg_mask(priv, 0x05, loop_through, 0x80);
+ if (rc < 0)
+ return rc;
+
+ /* Loop through attenuation */
+ rc = r82xx_write_reg_mask(priv, 0x1f, lt_att, 0x80);
+ if (rc < 0)
+ return rc;
+
+ /* filter extension widest */
+ rc = r82xx_write_reg_mask(priv, 0x0f, flt_ext_widest, 0x80);
+ if (rc < 0)
+ return rc;
+
+ /* RF poly filter current */
+ rc = r82xx_write_reg_mask(priv, 0x19, polyfil_cur, 0x60);
+ if (rc < 0)
+ return rc;
+
+ /* Store current standard. If it changes, re-calibrate the tuner */
+ priv->delsys = delsys;
+ priv->type = type;
+ priv->bw = bw;
+
+ return 0;
+}
+
+static int r82xx_read_gain(struct r82xx_priv *priv)
+{
+ uint8_t data[4];
+ int rc;
+
+ rc = r82xx_read(priv, 0x00, data, sizeof(data));
+ if (rc < 0)
+ return rc;
+
+ return ((data[3] & 0x0f) << 1) + ((data[3] & 0xf0) >> 4);
+}
+
+/* measured with a Racal 6103E GSM test set at 928 MHz with -60 dBm
+ * input power, for raw results see:
+ * http://steve-m.de/projects/rtl-sdr/gain_measurement/r820t/
+ */
+
+#define VGA_BASE_GAIN -47
+static const int r82xx_vga_gain_steps[] = {
+ 0, 26, 26, 30, 42, 35, 24, 13, 14, 32, 36, 34, 35, 37, 35, 36
+};
+
+static const int r82xx_lna_gain_steps[] = {
+ 0, 9, 13, 40, 38, 13, 31, 22, 26, 31, 26, 14, 19, 5, 35, 13
+};
+
+static const int r82xx_mixer_gain_steps[] = {
+ 0, 5, 10, 10, 19, 9, 10, 25, 17, 10, 8, 16, 13, 6, 3, -8
+};
+
+int r82xx_set_gain(struct r82xx_priv *priv, int set_manual_gain, int gain)
+{
+ int rc;
+
+ if (set_manual_gain) {
+ int i, total_gain = 0;
+ uint8_t mix_index = 0, lna_index = 0;
+ uint8_t data[4];
+
+ /* LNA auto off */
+ rc = r82xx_write_reg_mask(priv, 0x05, 0x10, 0x10);
+ if (rc < 0)
+ return rc;
+
+ /* Mixer auto off */
+ rc = r82xx_write_reg_mask(priv, 0x07, 0, 0x10);
+ if (rc < 0)
+ return rc;
+
+ rc = r82xx_read(priv, 0x00, data, sizeof(data));
+ if (rc < 0)
+ return rc;
+
+ /* set fixed VGA gain for now (16.3 dB) */
+ rc = r82xx_write_reg_mask(priv, 0x0c, 0x08, 0x9f);
+ if (rc < 0)
+ return rc;
+
+ for (i = 0; i < 15; i++) {
+ if (total_gain >= gain)
+ break;
+
+ total_gain += r82xx_lna_gain_steps[++lna_index];
+
+ if (total_gain >= gain)
+ break;
+
+ total_gain += r82xx_mixer_gain_steps[++mix_index];
+ }
+
+ /* set LNA gain */
+ rc = r82xx_write_reg_mask(priv, 0x05, lna_index, 0x0f);
+ if (rc < 0)
+ return rc;
+
+ /* set Mixer gain */
+ rc = r82xx_write_reg_mask(priv, 0x07, mix_index, 0x0f);
+ if (rc < 0)
+ return rc;
+ } else {
+ /* LNA */
+ rc = r82xx_write_reg_mask(priv, 0x05, 0, 0x10);
+ if (rc < 0)
+ return rc;
+
+ /* Mixer */
+ rc = r82xx_write_reg_mask(priv, 0x07, 0x10, 0x10);
+ if (rc < 0)
+ return rc;
+
+ /* set fixed VGA gain for now (26.5 dB) */
+ rc = r82xx_write_reg_mask(priv, 0x0c, 0x0b, 0x9f);
+ if (rc < 0)
+ return rc;
+ }
+
+ return 0;
+}
+
+/* Bandwidth contribution by low-pass filter. */
+static const int r82xx_if_low_pass_bw_table[] = {
+ 1700000, 1600000, 1550000, 1450000, 1200000, 900000, 700000, 550000, 450000, 350000
+};
+
+#define FILT_HP_BW1 350000
+#define FILT_HP_BW2 380000
+int r82xx_set_bandwidth(struct r82xx_priv *priv, int bw, uint32_t rate)
+{
+ int rc;
+ unsigned int i;
+ int real_bw = 0;
+ uint8_t reg_0a;
+ uint8_t reg_0b;
+
+ if (bw > 7000000) {
+ // BW: 8 MHz
+ reg_0a = 0x10;
+ reg_0b = 0x0b;
+ priv->int_freq = 4570000;
+ } else if (bw > 6000000) {
+ // BW: 7 MHz
+ reg_0a = 0x10;
+ reg_0b = 0x2a;
+ priv->int_freq = 4570000;
+ } else if (bw > r82xx_if_low_pass_bw_table[0] + FILT_HP_BW1 + FILT_HP_BW2) {
+ // BW: 6 MHz
+ reg_0a = 0x10;
+ reg_0b = 0x6b;
+ priv->int_freq = 3570000;
+ } else {
+ reg_0a = 0x00;
+ reg_0b = 0x80;
+ priv->int_freq = 2300000;
+
+ if (bw > r82xx_if_low_pass_bw_table[0] + FILT_HP_BW1) {
+ bw -= FILT_HP_BW2;
+ priv->int_freq += FILT_HP_BW2;
+ real_bw += FILT_HP_BW2;
+ } else {
+ reg_0b |= 0x20;
+ }
+
+ if (bw > r82xx_if_low_pass_bw_table[0]) {
+ bw -= FILT_HP_BW1;
+ priv->int_freq += FILT_HP_BW1;
+ real_bw += FILT_HP_BW1;
+ } else {
+ reg_0b |= 0x40;
+ }
+
+ // find low-pass filter
+ for(i = 0; i < ARRAY_SIZE(r82xx_if_low_pass_bw_table); ++i) {
+ if (bw > r82xx_if_low_pass_bw_table[i])
+ break;
+ }
+ --i;
+ reg_0b |= 15 - i;
+ real_bw += r82xx_if_low_pass_bw_table[i];
+
+ priv->int_freq -= real_bw / 2;
+ }
+
+ rc = r82xx_write_reg_mask(priv, 0x0a, reg_0a, 0x10);
+ if (rc < 0)
+ return rc;
+
+ rc = r82xx_write_reg_mask(priv, 0x0b, reg_0b, 0xef);
+ if (rc < 0)
+ return rc;
+
+ return priv->int_freq;
+}
+#undef FILT_HP_BW1
+#undef FILT_HP_BW2
+
+int r82xx_set_freq(struct r82xx_priv *priv, uint32_t freq)
+{
+ int rc = -1;
+ uint32_t lo_freq = freq + priv->int_freq;
+ uint8_t air_cable1_in;
+
+ rc = r82xx_set_mux(priv, lo_freq);
+ if (rc < 0)
+ goto err;
+
+ rc = r82xx_set_pll(priv, lo_freq);
+ if (rc < 0 || !priv->has_lock)
+ goto err;
+
+ /* switch between 'Cable1' and 'Air-In' inputs on sticks with
+ * R828D tuner. We switch at 345 MHz, because that's where the
+ * noise-floor has about the same level with identical LNA
+ * settings. The original driver used 320 MHz. */
+ air_cable1_in = (freq > MHZ(345)) ? 0x00 : 0x60;
+
+ if ((priv->cfg->rafael_chip == CHIP_R828D) &&
+ (air_cable1_in != priv->input)) {
+ priv->input = air_cable1_in;
+ rc = r82xx_write_reg_mask(priv, 0x05, air_cable1_in, 0x60);
+ }
+
+err:
+ if (rc < 0)
+ fprintf(stderr, "%s: failed=%d\n", __FUNCTION__, rc);
+ return rc;
+}
+
+/*
+ * r82xx standby logic
+ */
+
+int r82xx_standby(struct r82xx_priv *priv)
+{
+ int rc;
+
+ /* If device was not initialized yet, don't need to standby */
+ if (!priv->init_done)
+ return 0;
+
+ rc = r82xx_write_reg(priv, 0x06, 0xb1);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg(priv, 0x05, 0xa0);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg(priv, 0x07, 0x3a);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg(priv, 0x08, 0x40);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg(priv, 0x09, 0xc0);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg(priv, 0x0a, 0x36);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg(priv, 0x0c, 0x35);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg(priv, 0x0f, 0x68);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg(priv, 0x11, 0x03);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg(priv, 0x17, 0xf4);
+ if (rc < 0)
+ return rc;
+ rc = r82xx_write_reg(priv, 0x19, 0x0c);
+
+ /* Force initial calibration */
+ priv->type = -1;
+
+ return rc;
+}
+
+/*
+ * r82xx device init logic
+ */
+
+static int r82xx_xtal_check(struct r82xx_priv *priv)
+{
+ int rc;
+ unsigned int i;
+ uint8_t data[3], val;
+
+ /* Initialize the shadow registers */
+ memcpy(priv->regs, r82xx_init_array, sizeof(r82xx_init_array));
+
+ /* cap 30pF & Drive Low */
+ rc = r82xx_write_reg_mask(priv, 0x10, 0x0b, 0x0b);
+ if (rc < 0)
+ return rc;
+
+ /* set pll autotune = 128kHz */
+ rc = r82xx_write_reg_mask(priv, 0x1a, 0x00, 0x0c);
+ if (rc < 0)
+ return rc;
+
+ /* set manual initial reg = 111111; */
+ rc = r82xx_write_reg_mask(priv, 0x13, 0x7f, 0x7f);
+ if (rc < 0)
+ return rc;
+
+ /* set auto */
+ rc = r82xx_write_reg_mask(priv, 0x13, 0x00, 0x40);
+ if (rc < 0)
+ return rc;
+
+ /* Try several xtal capacitor alternatives */
+ for (i = 0; i < ARRAY_SIZE(r82xx_xtal_capacitor); i++) {
+ rc = r82xx_write_reg_mask(priv, 0x10,
+ r82xx_xtal_capacitor[i][0], 0x1b);
+ if (rc < 0)
+ return rc;
+
+// usleep_range(5000, 6000);
+
+ rc = r82xx_read(priv, 0x00, data, sizeof(data));
+ if (rc < 0)
+ return rc;
+ if (!(data[2] & 0x40))
+ continue;
+
+ val = data[2] & 0x3f;
+
+ if (priv->cfg->xtal == 16000000 && (val > 29 || val < 23))
+ break;
+
+ if (val != 0x3f)
+ break;
+ }
+
+ if (i == ARRAY_SIZE(r82xx_xtal_capacitor))
+ return -1;
+
+ return r82xx_xtal_capacitor[i][1];
+}
+
+int r82xx_init(struct r82xx_priv *priv)
+{
+ int rc;
+
+ /* TODO: R828D might need r82xx_xtal_check() */
+ priv->xtal_cap_sel = XTAL_HIGH_CAP_0P;
+
+ /* Initialize registers */
+ rc = r82xx_write(priv, 0x05,
+ r82xx_init_array, sizeof(r82xx_init_array));
+
+ rc = r82xx_set_tv_standard(priv, 3, TUNER_DIGITAL_TV, 0);
+ if (rc < 0)
+ goto err;
+
+ rc = r82xx_sysfreq_sel(priv, 0, TUNER_DIGITAL_TV, SYS_DVBT);
+
+ priv->init_done = 1;
+
+err:
+ if (rc < 0)
+ fprintf(stderr, "%s: failed=%d\n", __FUNCTION__, rc);
+ return rc;
+}
+
+#if 0
+/* Not used, for now */
+static int r82xx_gpio(struct r82xx_priv *priv, int enable)
+{
+ return r82xx_write_reg_mask(priv, 0x0f, enable ? 1 : 0, 0x01);
+}
+#endif