summaryrefslogtreecommitdiff
path: root/Radio/HW/RtlSdr/r820/src/tuner_e4k.c
blob: e4fb11e5ecda98b53dc138a00cc33ca40cdc137a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
 * Elonics E4000 tuner driver
 *
 * (C) 2011-2012 by Harald Welte <laforge@gnumonks.org>
 * (C) 2012 by Sylvain Munaut <tnt@246tNt.com>
 * (C) 2012 by Hoernchen <la@tfc-server.de>
 *
 * All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <limits.h>
#include <stdint.h>
#include <errno.h>
#include <string.h>
#include <stdio.h>

#include <reg_field.h>
#include <tuner_e4k.h>
#include <rtlsdr_i2c.h>

#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))

/* If this is defined, the limits are somewhat relaxed compared to what the
 * vendor claims is possible */
#define OUT_OF_SPEC

#define MHZ(x)	((x)*1000*1000)
#define KHZ(x)	((x)*1000)

uint32_t unsigned_delta(uint32_t a, uint32_t b)
{
	if (a > b)
		return a - b;
	else
		return b - a;
}

/* look-up table bit-width -> mask */
static const uint8_t width2mask[] = {
	0, 1, 3, 7, 0xf, 0x1f, 0x3f, 0x7f, 0xff
};

/***********************************************************************
 * Register Access */

/*! \brief Write a register of the tuner chip
 *  \param[in] e4k reference to the tuner
 *  \param[in] reg number of the register
 *  \param[in] val value to be written
 *  \returns 0 on success, negative in case of error
 */
static int e4k_reg_write(struct e4k_state *e4k, uint8_t reg, uint8_t val)
{
	int r;
	uint8_t data[2];
	data[0] = reg;
	data[1] = val;

	r = rtlsdr_i2c_write_fn(e4k->rtl_dev, e4k->i2c_addr, data, 2);
	return r == 2 ? 0 : -1;
}

/*! \brief Read a register of the tuner chip
 *  \param[in] e4k reference to the tuner
 *  \param[in] reg number of the register
 *  \returns positive 8bit register contents on success, negative in case of error
 */
static int e4k_reg_read(struct e4k_state *e4k, uint8_t reg)
{
	uint8_t data = reg;

	if (rtlsdr_i2c_write_fn(e4k->rtl_dev, e4k->i2c_addr, &data, 1) < 1)
		return -1;

	if (rtlsdr_i2c_read_fn(e4k->rtl_dev, e4k->i2c_addr, &data, 1) < 1)
		return -1;

	return data;
}

/*! \brief Set or clear some (masked) bits inside a register
 *  \param[in] e4k reference to the tuner
 *  \param[in] reg number of the register
 *  \param[in] mask bit-mask of the value
 *  \param[in] val data value to be written to register
 *  \returns 0 on success, negative in case of error
 */
static int e4k_reg_set_mask(struct e4k_state *e4k, uint8_t reg,
		     uint8_t mask, uint8_t val)
{
	uint8_t tmp = e4k_reg_read(e4k, reg);

	if ((tmp & mask) == val)
		return 0;

	return e4k_reg_write(e4k, reg, (tmp & ~mask) | (val & mask));
}

/*! \brief Write a given field inside a register
 *  \param[in] e4k reference to the tuner
 *  \param[in] field structure describing the field
 *  \param[in] val value to be written
 *  \returns 0 on success, negative in case of error
 */
static int e4k_field_write(struct e4k_state *e4k, const struct reg_field *field, uint8_t val)
{
	int rc;
	uint8_t mask;

	rc = e4k_reg_read(e4k, field->reg);
	if (rc < 0)
		return rc;

	mask = width2mask[field->width] << field->shift;

	return e4k_reg_set_mask(e4k, field->reg, mask, val << field->shift);
}

/*! \brief Read a given field inside a register
 *  \param[in] e4k reference to the tuner
 *  \param[in] field structure describing the field
 *  \returns positive value of the field, negative in case of error
 */
static int e4k_field_read(struct e4k_state *e4k, const struct reg_field *field)
{
	int rc;

	rc = e4k_reg_read(e4k, field->reg);
	if (rc < 0)
		return rc;

	rc = (rc >> field->shift) & width2mask[field->width];

	return rc;
}

/***********************************************************************
 * Filter Control */

static const uint32_t rf_filt_center_uhf[] = {
	MHZ(360), MHZ(380), MHZ(405), MHZ(425),
	MHZ(450), MHZ(475), MHZ(505), MHZ(540),
	MHZ(575), MHZ(615), MHZ(670), MHZ(720),
	MHZ(760), MHZ(840), MHZ(890), MHZ(970)
};

static const uint32_t rf_filt_center_l[] = {
	MHZ(1300), MHZ(1320), MHZ(1360), MHZ(1410),
	MHZ(1445), MHZ(1460), MHZ(1490), MHZ(1530),
	MHZ(1560), MHZ(1590), MHZ(1640), MHZ(1660),
	MHZ(1680), MHZ(1700), MHZ(1720), MHZ(1750)
};

static int closest_arr_idx(const uint32_t *arr, unsigned int arr_size, uint32_t freq)
{
	unsigned int i, bi = 0;
	uint32_t best_delta = 0xffffffff;

	/* iterate over the array containing a list of the center
	 * frequencies, selecting the closest one */
	for (i = 0; i < arr_size; i++) {
		uint32_t delta = unsigned_delta(freq, arr[i]);
		if (delta < best_delta) {
			best_delta = delta;
			bi = i;
		}
	}

	return bi;
}

/* return 4-bit index as to which RF filter to select */
static int choose_rf_filter(enum e4k_band band, uint32_t freq)
{
	int rc;

	switch (band) {
		case E4K_BAND_VHF2:
		case E4K_BAND_VHF3:
			rc = 0;
			break;
		case E4K_BAND_UHF:
			rc = closest_arr_idx(rf_filt_center_uhf,
						 ARRAY_SIZE(rf_filt_center_uhf),
						 freq);
			break;
		case E4K_BAND_L:
			rc = closest_arr_idx(rf_filt_center_l,
						 ARRAY_SIZE(rf_filt_center_l),
						 freq);
			break;
		default:
			rc = -EINVAL;
			break;
	}

	return rc;
}

/* \brief Automatically select apropriate RF filter based on e4k state */
int e4k_rf_filter_set(struct e4k_state *e4k)
{
	int rc;

	rc = choose_rf_filter(e4k->band, e4k->vco.flo);
	if (rc < 0)
		return rc;

	return e4k_reg_set_mask(e4k, E4K_REG_FILT1, 0xF, rc);
}

/* Mixer Filter */
static const uint32_t mix_filter_bw[] = {
	KHZ(27000), KHZ(27000), KHZ(27000), KHZ(27000),
	KHZ(27000), KHZ(27000), KHZ(27000), KHZ(27000),
	KHZ(4600), KHZ(4200), KHZ(3800), KHZ(3400),
	KHZ(3300), KHZ(2700), KHZ(2300), KHZ(1900)
};

/* IF RC Filter */
static const uint32_t ifrc_filter_bw[] = {
	KHZ(21400), KHZ(21000), KHZ(17600), KHZ(14700),
	KHZ(12400), KHZ(10600), KHZ(9000), KHZ(7700),
	KHZ(6400), KHZ(5300), KHZ(4400), KHZ(3400),
	KHZ(2600), KHZ(1800), KHZ(1200), KHZ(1000)
};

/* IF Channel Filter */
static const uint32_t ifch_filter_bw[] = {
	KHZ(5500), KHZ(5300), KHZ(5000), KHZ(4800),
	KHZ(4600), KHZ(4400), KHZ(4300), KHZ(4100),
	KHZ(3900), KHZ(3800), KHZ(3700), KHZ(3600),
	KHZ(3400), KHZ(3300), KHZ(3200), KHZ(3100),
	KHZ(3000), KHZ(2950), KHZ(2900), KHZ(2800),
	KHZ(2750), KHZ(2700), KHZ(2600), KHZ(2550),
	KHZ(2500), KHZ(2450), KHZ(2400), KHZ(2300),
	KHZ(2280), KHZ(2240), KHZ(2200), KHZ(2150)
};

static const uint32_t *if_filter_bw[] = {
	mix_filter_bw,
	ifch_filter_bw,
	ifrc_filter_bw,
};

static const uint32_t if_filter_bw_len[] = {
	ARRAY_SIZE(mix_filter_bw),
	ARRAY_SIZE(ifch_filter_bw),
	ARRAY_SIZE(ifrc_filter_bw),
};

static const struct reg_field if_filter_fields[] = {
	{
		E4K_REG_FILT2, 4, 4,
	},
	{
		E4K_REG_FILT3, 0, 5,
	},
	{
		E4K_REG_FILT2, 0, 4,
	}
};

static int find_if_bw(enum e4k_if_filter filter, uint32_t bw)
{
	if (filter >= ARRAY_SIZE(if_filter_bw))
		return -EINVAL;

	return closest_arr_idx(if_filter_bw[filter],
			       if_filter_bw_len[filter], bw);
}

/*! \brief Set the filter band-width of any of the IF filters
 *  \param[in] e4k reference to the tuner chip
 *  \param[in] filter filter to be configured
 *  \param[in] bandwidth bandwidth to be configured
 *  \returns positive actual filter band-width, negative in case of error
 */
int e4k_if_filter_bw_set(struct e4k_state *e4k, enum e4k_if_filter filter,
		         uint32_t bandwidth)
{
	int bw_idx;
	const struct reg_field *field;

	if (filter >= ARRAY_SIZE(if_filter_bw))
		return -EINVAL;

	bw_idx = find_if_bw(filter, bandwidth);

	field = &if_filter_fields[filter];

	return e4k_field_write(e4k, field, bw_idx);
}

/*! \brief Enables / Disables the channel filter
 *  \param[in] e4k reference to the tuner chip
 *  \param[in] on 1=filter enabled, 0=filter disabled
 *  \returns 0 success, negative errors
 */
int e4k_if_filter_chan_enable(struct e4k_state *e4k, int on)
{
	return e4k_reg_set_mask(e4k, E4K_REG_FILT3, E4K_FILT3_DISABLE,
	                        on ? 0 : E4K_FILT3_DISABLE);
}

int e4k_if_filter_bw_get(struct e4k_state *e4k, enum e4k_if_filter filter)
{
	const uint32_t *arr;
	int rc;
	const struct reg_field *field;

	if (filter >= ARRAY_SIZE(if_filter_bw))
		return -EINVAL;

	field = &if_filter_fields[filter];

	rc = e4k_field_read(e4k, field);
	if (rc < 0)
		return rc;

	arr = if_filter_bw[filter];

	return arr[rc];
}


/***********************************************************************
 * Frequency Control */

#define E4K_FVCO_MIN_KHZ	2600000	/* 2.6 GHz */
#define E4K_FVCO_MAX_KHZ	3900000	/* 3.9 GHz */
#define E4K_PLL_Y		65536

#ifdef OUT_OF_SPEC
#define E4K_FLO_MIN_MHZ		50
#define E4K_FLO_MAX_MHZ		2200UL
#else
#define E4K_FLO_MIN_MHZ		64
#define E4K_FLO_MAX_MHZ		1700
#endif

struct pll_settings {
	uint32_t freq;
	uint8_t reg_synth7;
	uint8_t mult;
};

static const struct pll_settings pll_vars[] = {
	{KHZ(72400),	(1 << 3) | 7,	48},
	{KHZ(81200),	(1 << 3) | 6,	40},
	{KHZ(108300),	(1 << 3) | 5,	32},
	{KHZ(162500),	(1 << 3) | 4,	24},
	{KHZ(216600),	(1 << 3) | 3,	16},
	{KHZ(325000),	(1 << 3) | 2,	12},
	{KHZ(350000),	(1 << 3) | 1,	8},
	{KHZ(432000),	(0 << 3) | 3,	8},
	{KHZ(667000),	(0 << 3) | 2,	6},
	{KHZ(1200000),	(0 << 3) | 1,	4}
};

static int is_fvco_valid(uint32_t fvco_z)
{
	/* check if the resulting fosc is valid */
	if (fvco_z/1000 < E4K_FVCO_MIN_KHZ ||
	    fvco_z/1000 > E4K_FVCO_MAX_KHZ) {
		fprintf(stderr, "[E4K] Fvco %u invalid\n", fvco_z);
		return 0;
	}

	return 1;
}

static int is_fosc_valid(uint32_t fosc)
{
	if (fosc < MHZ(16) || fosc > MHZ(30)) {
		fprintf(stderr, "[E4K] Fosc %u invalid\n", fosc);
		return 0;
	}

	return 1;
}

static int is_z_valid(uint32_t z)
{
	if (z > 255) {
		fprintf(stderr, "[E4K] Z %u invalid\n", z);
		return 0;
	}

	return 1;
}

/*! \brief Determine if 3-phase mixing shall be used or not */
static int use_3ph_mixing(uint32_t flo)
{
	/* this is a magic number somewhre between VHF and UHF */
	if (flo < MHZ(350))
		return 1;

	return 0;
}

/* \brief compute Fvco based on Fosc, Z and X
 * \returns positive value (Fvco in Hz), 0 in case of error */
static uint64_t compute_fvco(uint32_t f_osc, uint8_t z, uint16_t x)
{
	uint64_t fvco_z, fvco_x, fvco;

	/* We use the following transformation in order to
	 * handle the fractional part with integer arithmetic:
	 *  Fvco = Fosc * (Z + X/Y) <=> Fvco = Fosc * Z + (Fosc * X)/Y
	 * This avoids X/Y = 0.  However, then we would overflow a 32bit
	 * integer, as we cannot hold e.g. 26 MHz * 65536 either.
	 */
	fvco_z = (uint64_t)f_osc * z;

#if 0
	if (!is_fvco_valid(fvco_z))
		return 0;
#endif

	fvco_x = ((uint64_t)f_osc * x) / E4K_PLL_Y;

	fvco = fvco_z + fvco_x;

	return fvco;
}

static uint32_t compute_flo(uint32_t f_osc, uint8_t z, uint16_t x, uint8_t r)
{
	uint64_t fvco = compute_fvco(f_osc, z, x);
	if (fvco == 0)
		return -EINVAL;

	return fvco / r;
}

static int e4k_band_set(struct e4k_state *e4k, enum e4k_band band)
{
	int rc;

	switch (band) {
	case E4K_BAND_VHF2:
	case E4K_BAND_VHF3:
	case E4K_BAND_UHF:
		e4k_reg_write(e4k, E4K_REG_BIAS, 3);
		break;
	case E4K_BAND_L:
		e4k_reg_write(e4k, E4K_REG_BIAS, 0);
		break;
	}

	/* workaround: if we don't reset this register before writing to it,
	 * we get a gap between 325-350 MHz */
	rc = e4k_reg_set_mask(e4k, E4K_REG_SYNTH1, 0x06, 0);
	rc = e4k_reg_set_mask(e4k, E4K_REG_SYNTH1, 0x06, band << 1);
	if (rc >= 0)
		e4k->band = band;

	return rc;
}

/*! \brief Compute PLL parameters for givent target frequency
 *  \param[out] oscp Oscillator parameters, if computation successful
 *  \param[in] fosc Clock input frequency applied to the chip (Hz)
 *  \param[in] intended_flo target tuning frequency (Hz)
 *  \returns actual PLL frequency, as close as possible to intended_flo,
 *	     0 in case of error
 */
uint32_t e4k_compute_pll_params(struct e4k_pll_params *oscp, uint32_t fosc, uint32_t intended_flo)
{
	uint32_t i;
	uint8_t r = 2;
	uint64_t intended_fvco, remainder;
	uint64_t z = 0;
	uint32_t x;
	int flo;
	int three_phase_mixing = 0;
	oscp->r_idx = 0;

	if (!is_fosc_valid(fosc))
		return 0;

	for(i = 0; i < ARRAY_SIZE(pll_vars); ++i) {
		if(intended_flo < pll_vars[i].freq) {
			three_phase_mixing = (pll_vars[i].reg_synth7 & 0x08) ? 1 : 0;
			oscp->r_idx = pll_vars[i].reg_synth7;
			r = pll_vars[i].mult;
			break;
		}
	}

	//fprintf(stderr, "[E4K] Fint=%u, R=%u\n", intended_flo, r);

	/* flo(max) = 1700MHz, R(max) = 48, we need 64bit! */
	intended_fvco = (uint64_t)intended_flo * r;

	/* compute integral component of multiplier */
	z = intended_fvco / fosc;

	/* compute fractional part.  this will not overflow,
	* as fosc(max) = 30MHz and z(max) = 255 */
	remainder = intended_fvco - (fosc * z);
	/* remainder(max) = 30MHz, E4K_PLL_Y = 65536 -> 64bit! */
	x = (remainder * E4K_PLL_Y) / fosc;
	/* x(max) as result of this computation is 65536 */

	flo = compute_flo(fosc, z, x, r);

	oscp->fosc = fosc;
	oscp->flo = flo;
	oscp->intended_flo = intended_flo;
	oscp->r = r;
//	oscp->r_idx = pll_vars[i].reg_synth7 & 0x0;
	oscp->threephase = three_phase_mixing;
	oscp->x = x;
	oscp->z = z;

	return flo;
}

int e4k_tune_params(struct e4k_state *e4k, struct e4k_pll_params *p)
{
	/* program R + 3phase/2phase */
	e4k_reg_write(e4k, E4K_REG_SYNTH7, p->r_idx);
	/* program Z */
	e4k_reg_write(e4k, E4K_REG_SYNTH3, p->z);
	/* program X */
	e4k_reg_write(e4k, E4K_REG_SYNTH4, p->x & 0xff);
	e4k_reg_write(e4k, E4K_REG_SYNTH5, p->x >> 8);

	/* we're in auto calibration mode, so there's no need to trigger it */

	memcpy(&e4k->vco, p, sizeof(e4k->vco));

	/* set the band */
	if (e4k->vco.flo < MHZ(140))
		e4k_band_set(e4k, E4K_BAND_VHF2);
	else if (e4k->vco.flo < MHZ(350))
		e4k_band_set(e4k, E4K_BAND_VHF3);
	else if (e4k->vco.flo < MHZ(1135))
		e4k_band_set(e4k, E4K_BAND_UHF);
	else
		e4k_band_set(e4k, E4K_BAND_L);

	/* select and set proper RF filter */
	e4k_rf_filter_set(e4k);

	return e4k->vco.flo;
}

/*! \brief High-level tuning API, just specify frquency
 *
 *  This function will compute matching PLL parameters, program them into the
 *  hardware and set the band as well as RF filter.
 *
 *  \param[in] e4k reference to tuner
 *  \param[in] freq frequency in Hz
 *  \returns actual tuned frequency, negative in case of error
 */
int e4k_tune_freq(struct e4k_state *e4k, uint32_t freq)
{
	uint32_t rc;
	struct e4k_pll_params p;

	/* determine PLL parameters */
	rc = e4k_compute_pll_params(&p, e4k->vco.fosc, freq);
	if (!rc)
		return -EINVAL;

	/* actually tune to those parameters */
	rc = e4k_tune_params(e4k, &p);

	/* check PLL lock */
	rc = e4k_reg_read(e4k, E4K_REG_SYNTH1);
	if (!(rc & 0x01)) {
		fprintf(stderr, "[E4K] PLL not locked for %u Hz!\n", freq);
		return -1;
	}

	return 0;
}

/***********************************************************************
 * Gain Control */

static const int8_t if_stage1_gain[] = {
	-3, 6
};

static const int8_t if_stage23_gain[] = {
	0, 3, 6, 9
};

static const int8_t if_stage4_gain[] = {
	0, 1, 2, 2
};

static const int8_t if_stage56_gain[] = {
	3, 6, 9, 12, 15, 15, 15, 15
};

static const int8_t *if_stage_gain[] = {
	0,
	if_stage1_gain,
	if_stage23_gain,
	if_stage23_gain,
	if_stage4_gain,
	if_stage56_gain,
	if_stage56_gain
};

static const uint8_t if_stage_gain_len[] = {
	0,
	ARRAY_SIZE(if_stage1_gain),
	ARRAY_SIZE(if_stage23_gain),
	ARRAY_SIZE(if_stage23_gain),
	ARRAY_SIZE(if_stage4_gain),
	ARRAY_SIZE(if_stage56_gain),
	ARRAY_SIZE(if_stage56_gain)
};

static const struct reg_field if_stage_gain_regs[] = {
	{ 0, 0, 0 },
	{ E4K_REG_GAIN3, 0, 1 },
	{ E4K_REG_GAIN3, 1, 2 },
	{ E4K_REG_GAIN3, 3, 2 },
	{ E4K_REG_GAIN3, 5, 2 },
	{ E4K_REG_GAIN4, 0, 3 },
	{ E4K_REG_GAIN4, 3, 3 }
};

static const int32_t lnagain[] = {
	-50,	0,
	-25,	1,
	0,	4,
	25,	5,
	50,	6,
	75,	7,
	100,	8,
	125,	9,
	150,	10,
	175,	11,
	200,	12,
	250,	13,
	300,	14,
};

static const int32_t enhgain[] = {
	10, 30, 50, 70
};

int e4k_set_lna_gain(struct e4k_state *e4k, int32_t gain)
{
	uint32_t i;
	for(i = 0; i < ARRAY_SIZE(lnagain)/2; ++i) {
		if(lnagain[i*2] == gain) {
			e4k_reg_set_mask(e4k, E4K_REG_GAIN1, 0xf, lnagain[i*2+1]);
			return gain;
		}
	}
	return -EINVAL;
}

int e4k_set_enh_gain(struct e4k_state *e4k, int32_t gain)
{
	uint32_t i;
	for(i = 0; i < ARRAY_SIZE(enhgain); ++i) {
		if(enhgain[i] == gain) {
			e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, E4K_AGC11_LNA_GAIN_ENH | (i << 1));
			return gain;
		}
	}
	e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, 0);

	/* special case: 0 = off*/
	if(0 == gain)
		return 0;
	else
		return -EINVAL;
}

int e4k_enable_manual_gain(struct e4k_state *e4k, uint8_t manual)
{
	if (manual) {
		/* Set LNA mode to manual */
		e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, E4K_AGC_MOD_SERIAL);

		/* Set Mixer Gain Control to manual */
		e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0);
	} else {
		/* Set LNA mode to auto */
		e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, E4K_AGC_MOD_IF_SERIAL_LNA_AUTON);
		/* Set Mixer Gain Control to auto */
		e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 1);

		e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, 0);
	}

	return 0;
}

static int find_stage_gain(uint8_t stage, int8_t val)
{
	const int8_t *arr;
	int i;

	if (stage >= ARRAY_SIZE(if_stage_gain))
		return -EINVAL;

	arr = if_stage_gain[stage];

	for (i = 0; i < if_stage_gain_len[stage]; i++) {
		if (arr[i] == val)
			return i;
	}
	return -EINVAL;
}

/*! \brief Set the gain of one of the IF gain stages
 *  \param e4k handle to the tuner chip
 *  \param stage number of the stage (1..6)
 *  \param value gain value in dB
 *  \returns 0 on success, negative in case of error
 */
int e4k_if_gain_set(struct e4k_state *e4k, uint8_t stage, int8_t value)
{
	int rc;
	uint8_t mask;
	const struct reg_field *field;

	rc = find_stage_gain(stage, value);
	if (rc < 0)
		return rc;

	/* compute the bit-mask for the given gain field */
	field = &if_stage_gain_regs[stage];
	mask = width2mask[field->width] << field->shift;

	return e4k_reg_set_mask(e4k, field->reg, mask, rc << field->shift);
}

int e4k_mixer_gain_set(struct e4k_state *e4k, int8_t value)
{
	uint8_t bit;

	switch (value) {
	case 4:
		bit = 0;
		break;
	case 12:
		bit = 1;
		break;
	default:
		return -EINVAL;
	}

	return e4k_reg_set_mask(e4k, E4K_REG_GAIN2, 1, bit);
}

int e4k_commonmode_set(struct e4k_state *e4k, int8_t value)
{
	if(value < 0)
		return -EINVAL;
	else if(value > 7)
		return -EINVAL;

	return e4k_reg_set_mask(e4k, E4K_REG_DC7, 7, value);
}

/***********************************************************************
 * DC Offset */

int e4k_manual_dc_offset(struct e4k_state *e4k, int8_t iofs, int8_t irange, int8_t qofs, int8_t qrange)
{
	int res;

	if((iofs < 0x00) || (iofs > 0x3f))
		return -EINVAL;
	if((irange < 0x00) || (irange > 0x03))
		return -EINVAL;
	if((qofs < 0x00) || (qofs > 0x3f))
		return -EINVAL;
	if((qrange < 0x00) || (qrange > 0x03))
		return -EINVAL;

	res = e4k_reg_set_mask(e4k, E4K_REG_DC2, 0x3f, iofs);
	if(res < 0)
		return res;

	res = e4k_reg_set_mask(e4k, E4K_REG_DC3, 0x3f, qofs);
	if(res < 0)
		return res;

	res = e4k_reg_set_mask(e4k, E4K_REG_DC4, 0x33, (qrange << 4) | irange);
	return res;
}

/*! \brief Perform a DC offset calibration right now
 *  \param [e4k] handle to the tuner chip
 */
int e4k_dc_offset_calibrate(struct e4k_state *e4k)
{
	/* make sure the DC range detector is enabled */
	e4k_reg_set_mask(e4k, E4K_REG_DC5, E4K_DC5_RANGE_DET_EN, E4K_DC5_RANGE_DET_EN);

	return e4k_reg_write(e4k, E4K_REG_DC1, 0x01);
}


static const int8_t if_gains_max[] = {
	0, 6, 9, 9, 2, 15, 15
};

struct gain_comb {
	int8_t mixer_gain;
	int8_t if1_gain;
	uint8_t reg;
};

static const struct gain_comb dc_gain_comb[] = {
	{ 4,  -3, 0x50 },
	{ 4,   6, 0x51 },
	{ 12, -3, 0x52 },
	{ 12,  6, 0x53 },
};

#define TO_LUT(offset, range)	(offset | (range << 6))

int e4k_dc_offset_gen_table(struct e4k_state *e4k)
{
	uint32_t i;

	/* FIXME: read ont current gain values and write them back
	 * before returning to the caller */

	/* disable auto mixer gain */
	e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0);

	/* set LNA/IF gain to full manual */
	e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK,
			 E4K_AGC_MOD_SERIAL);

	/* set all 'other' gains to maximum */
	for (i = 2; i <= 6; i++)
		e4k_if_gain_set(e4k, i, if_gains_max[i]);

	/* iterate over all mixer + if_stage_1 gain combinations */
	for (i = 0; i < ARRAY_SIZE(dc_gain_comb); i++) {
		uint8_t offs_i, offs_q, range, range_i, range_q;

		/* set the combination of mixer / if1 gain */
		e4k_mixer_gain_set(e4k, dc_gain_comb[i].mixer_gain);
		e4k_if_gain_set(e4k, 1, dc_gain_comb[i].if1_gain);

		/* perform actual calibration */
		e4k_dc_offset_calibrate(e4k);

		/* extract I/Q offset and range values */
		offs_i = e4k_reg_read(e4k, E4K_REG_DC2) & 0x3f;
		offs_q = e4k_reg_read(e4k, E4K_REG_DC3) & 0x3f;
		range  = e4k_reg_read(e4k, E4K_REG_DC4);
		range_i = range & 0x3;
		range_q = (range >> 4) & 0x3;

		fprintf(stderr, "[E4K] Table %u I=%u/%u, Q=%u/%u\n",
			i, range_i, offs_i, range_q, offs_q);

		/* write into the table */
		e4k_reg_write(e4k, dc_gain_comb[i].reg,
			      TO_LUT(offs_q, range_q));
		e4k_reg_write(e4k, dc_gain_comb[i].reg + 0x10,
			      TO_LUT(offs_i, range_i));
	}

	return 0;
}

/***********************************************************************
 * Standby */

/*! \brief Enable/disable standby mode
 */
int e4k_standby(struct e4k_state *e4k, int enable)
{
	e4k_reg_set_mask(e4k, E4K_REG_MASTER1, E4K_MASTER1_NORM_STBY,
			 enable ? 0 : E4K_MASTER1_NORM_STBY);

	return 0;
}

/***********************************************************************
 * Initialization */

static int magic_init(struct e4k_state *e4k)
{
	e4k_reg_write(e4k, 0x7e, 0x01);
	e4k_reg_write(e4k, 0x7f, 0xfe);
	e4k_reg_write(e4k, 0x82, 0x00);
	e4k_reg_write(e4k, 0x86, 0x50);	/* polarity A */
	e4k_reg_write(e4k, 0x87, 0x20);
	e4k_reg_write(e4k, 0x88, 0x01);
	e4k_reg_write(e4k, 0x9f, 0x7f);
	e4k_reg_write(e4k, 0xa0, 0x07);

	return 0;
}

/*! \brief Initialize the E4K tuner
 */
int e4k_init(struct e4k_state *e4k)
{
	/* make a dummy i2c read or write command, will not be ACKed! */
	e4k_reg_read(e4k, 0);

	/* Make sure we reset everything and clear POR indicator */
	e4k_reg_write(e4k, E4K_REG_MASTER1,
		E4K_MASTER1_RESET |
		E4K_MASTER1_NORM_STBY |
		E4K_MASTER1_POR_DET
	);

	/* Configure clock input */
	e4k_reg_write(e4k, E4K_REG_CLK_INP, 0x00);

	/* Disable clock output */
	e4k_reg_write(e4k, E4K_REG_REF_CLK, 0x00);
	e4k_reg_write(e4k, E4K_REG_CLKOUT_PWDN, 0x96);

	/* Write some magic values into registers */
	magic_init(e4k);
#if 0
	/* Set common mode voltage a bit higher for more margin 850 mv */
	e4k_commonmode_set(e4k, 4);

	/* Initialize DC offset lookup tables */
	e4k_dc_offset_gen_table(e4k);

	/* Enable time variant DC correction */
	e4k_reg_write(e4k, E4K_REG_DCTIME1, 0x01);
	e4k_reg_write(e4k, E4K_REG_DCTIME2, 0x01);
#endif

	/* Set LNA mode to manual */
	e4k_reg_write(e4k, E4K_REG_AGC4, 0x10); /* High threshold */
	e4k_reg_write(e4k, E4K_REG_AGC5, 0x04);	/* Low threshold */
	e4k_reg_write(e4k, E4K_REG_AGC6, 0x1a);	/* LNA calib + loop rate */

	e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK,
		E4K_AGC_MOD_SERIAL);

	/* Set Mixer Gain Control to manual */
	e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0);

#if 0
	/* Enable LNA Gain enhancement */
	e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7,
			 E4K_AGC11_LNA_GAIN_ENH | (2 << 1));

	/* Enable automatic IF gain mode switching */
	e4k_reg_set_mask(e4k, E4K_REG_AGC8, 0x1, E4K_AGC8_SENS_LIN_AUTO);
#endif

	/* Use auto-gain as default */
	e4k_enable_manual_gain(e4k, 0);

	/* Select moderate gain levels */
	e4k_if_gain_set(e4k, 1, 6);
	e4k_if_gain_set(e4k, 2, 0);
	e4k_if_gain_set(e4k, 3, 0);
	e4k_if_gain_set(e4k, 4, 0);
	e4k_if_gain_set(e4k, 5, 9);
	e4k_if_gain_set(e4k, 6, 9);

	/* Set the most narrow filter we can possibly use */
	e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_MIX, KHZ(1900));
	e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_RC, KHZ(1000));
	e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_CHAN, KHZ(2150));
	e4k_if_filter_chan_enable(e4k, 1);

	/* Disable time variant DC correction and LUT */
	e4k_reg_set_mask(e4k, E4K_REG_DC5, 0x03, 0);
	e4k_reg_set_mask(e4k, E4K_REG_DCTIME1, 0x03, 0);
	e4k_reg_set_mask(e4k, E4K_REG_DCTIME2, 0x03, 0);

	return 0;
}