1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
#include <string.h>
#include "common.h"
#include "math.h"
extern struct global global;
//might change this to use hashtables for faster lookups.
c3_group_rot_t *get_group_rotation(char *id) {
int i;
for(i=0;global.group_rot[i];i++) {
if(!strcmp(global.group_rot[i]->id,id)) {
return global.group_rot[i];
}
}
return 0;//need to be sure to check return value for this function!
}
c3_t rotate_c3_xr(c3_t p1,c3_t p2,radians xr) {//rotate y and z around camera based on xr (looking up and down)
c2_t tmp;
tmp=rotate_c2((c2_t){p1.y,p1.z},(c2_t){p2.y,p2.z},xr);
return (c3_t){p1.x,tmp.x,tmp.y};
}
c3_t rotate_c3_yr(c3_t p1,c3_t p2,radians yr) {//rotate x and z around camera based on yr (looking left and right)
c2_t tmp;
tmp=rotate_c2((c2_t){p1.x,p1.z},(c2_t){p2.x,p2.z},yr);
return (c3_t){tmp.x,p1.y,tmp.y};
}
c3_t rotate_c3_zr(c3_t p1,c3_t p2,radians zr) {//rotate x and y around camera based on zr (cocking your head to a side)
c2_t tmp;
tmp=rotate_c2((c2_t){p1.x,p1.y},(c2_t){p2.x,p2.y},zr);
return (c3_t){tmp.x,tmp.y,p1.z};
}
//sin(0) = 0
//sin(90deg) = 1
//cos(0) = 1
//cos(90deg) = 0
//// rotate first point about second point
// if you pass (1,0),(0,0),0 it should output 1,0
// if you pass (0,1),(0,0),0 it should output 0,1
c2_t rotate_c2(c2_t p1,c2_t p2,radians dr) {
c2_t p3;
real d=distance2(p1,p2);
radians r=points_to_angle(p2,p1);
r.r=r.r+dr.r;
p3.x=(cos(r.r) * d) + p2.x;
p3.y=(sin(r.r) * d) + p2.y;
return p3;
}
real distance2(c2_t p1,c2_t p2) {
return sqrt(( (p1.x-p2.x)*(p1.x-p2.x) )+( (p1.y-p2.y)*(p1.y-p2.y) ));
}
degrees r2d(radians r) {
return (degrees){(r.r * (real)180 / M_PI) };
}
radians d2r(degrees d) {
while(d.d<0) d.d+=360;
return (radians){(real)(d.d%360) / (real)180 * M_PI};
}
//the angle from the first point to the second point. not the other way around.
radians points_to_angle(c2_t p1,c2_t p2) {
real a=atan2(p2.y-p1.y,p2.x-p1.x);
return (radians){a>=0?a:M_PI+M_PI+a};
}
int between_angles(degrees d,real lower,real upper) {
//lower may be higher than upper.
//because lower is < 0 which wraps to higher. lower is 270, upper is 90. 270-90 is in front.
if(lower > upper) {
if(d.d > lower) return 1;
if(d.d < upper) return 1;
}
if(upper > lower) {
if(d.d > lower && d.d < upper) return 1;
}
return 0;
}
int points_on_same_side_of_line(c2_t p1,c2_t p2,c2_t p3,c2_t p4) {//we're going to check if... well, the name says it all.
// if(s.len != 2) //well... I guess we'll just use the first two points anyway.
degrees la=r2d(points_to_angle(p3,p4));
degrees p1a=r2d(points_to_angle(p3,p1));
degrees p2a=r2d(points_to_angle(p3,p2));
//p1aa=
//now...
//between angles. if the line's angle is between the points' angles they're on opposite sides
if(between_angles(la,p1a.d,p2a.d)) {
return 1;
}
return 0;
}
//if a shape's angle between points continues to grow only in one direction the shape is convex.
//like for a square the angles would be 90,90,90,90 or -90,-90,-90,-90
//but if we end up with something like 90,90,-90,90,90,90 then we have concave.
//this could be used in a loop and then cut polygons into convex before loading them into the shapes array.
//not sure how I'm going to do this for 3d shapes... not needed I guess. this is for mouse-inside-shape
//after it has already been flattened. so it can't be used before they're loaded.
//has to be done at run-time with the 2d shapes that are in either c2 or cs format.
int is_shape_concave() {
//a;
//b;
//a=
//for(i=1;i<s.len;i++) {
// b=points_to_angle(s.p[i],s.p[(i+1)%s.len]);
// if(b < a) //figure out which direction the points are bending and if we bend the other direction then we're concave.
//}
return 0;
}
int point_inside_concave_shape(c2_t p1,c2_s_t s) {//hrm...
//the point must be on the inside side of all lines to be inside.
//if(s.len == 1) //as long as distance from the center is less than the radius we're in.
//else {
int i;
for(i=0;i<s.len;i++) {
//if(!points_on_same_side_of_line()) {
// return 0;
//}
}
return 1;
}
|