1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
title:Calculate fir coefficients with C
keywords:c,linux,fir,dsp,octave
# Calculate fir coefficients with C
## Intro
FIR filter's is probably ones of fascinating parts when you want to do with DSP,
its kind of too simple from first glance and they works. As before I have learned
about FIR and IIR
and was able to use them just from tools that take as input parameters and
give as output coefficients. Now time came just to calculate FIR from ground up.
Also C is perfect to do stuff without abstraction levels hiding details, and can
be ported to other languages and platforms. Lets calculate filter coefficients
with windows method. There is few more but those for later.
## Implementation
<script>
MathJax = {
tex: {
inlineMath: [['$', '$'], ['\\(', '\\)']]
}
};
</script>
<script type="text/javascript" id="MathJax-script" async
src="/js/tex-chtml.js">
</script>
Low pass ideal impulse response
Impulse response of the filter
$$2f_c\frac{sin(n \omega_c)}{n \omega_c}$$
```c
for (i=0;i<filter_N;i++) {
arg = (double)i-(double)(filter_N-1)/2.0;
h[i] = omega_c * sinc(omega_c*arg*M_PI);
}
```
Rectangular window for low pass filter
```c
for (i=0;i<filter_N1;i++) {
w[i] = 1.0;
}
```
Flip window, against middle as curve is symmetrical against center
```c
for (i=0;i<filter_N1;i++) {
w[filter_N-i-1] = w[i];
}
```
Convolution of ideal filter response $h[i]$ agains window function $w[i]$
```c
for (i=0;i<filter_N;i++) {
h[i] = h[i]*w[i];
}
```
How to use calculated coefficients
[/writeup/dsp_lp_filter.md#toc-6](/writeup/dsp_lp_filter.md#toc-6)
## Windowing methods
Here is most common windows for window methods that can give you better results then naive rectangular windows filter.
There is better ways how to calculate filters, but that for laters.
### Rectangular
```c
//rectangular window
for (i=0;i<filter_N1;i++) {
w[i] = 1.0;
}
```
### Hamming
```c
for (i=0;i<filter_N1;i++) {
arg = (double)i-(double)(filter_N-1)/2.0;
w[i] = 0.54+0.46*cos(2*M_PI*arg/filter_N);
}
```
### Hanning
```c
for (i=0;i<filter_N1;i++) {
arg = (double)i-(double)(filter_N-1)/2.0;
w[i] = 0.5+(1-0.5)*cos(2*M_PI*arg/filter_N);
}
```
### Blackman
```c
for (i=0;i<filter_N1;i++) {
arg = (double)i-(double)(filter_N-1)/2.0;
w[i] = 0.42
+0.50*cos(2*M_PI*arg/(filter_N-1))
+0.08*cos(4*M_PI*arg/(filter_N-1));
}
```
## Octave verification code
Try to run this code if there is complain that fir1 function is missing, then need to install signal and control packages for
Octave. There is may need to install Fortran compiler if its not yet installed on system.
from Octave command line
```
pkg install -forge control
pkg install -forge signal
```
After FIR filters calculated then best approach it to check filter response diagram. Replace in octave source code
values of __fir_coef__ with newly calculated values, and check if filter response is as expected.
If not then there is some kind of error.
```matlab
pkg load signal
Fs = 10000;
t = 0:1/Fs:1-1/Fs;
x = cos(2*pi*1000*t) + cos(2*pi*1500*t) + cos(2*pi*2000*t) \
+ cos(2*pi*4000*t) + cos(2*pi*5000*t) + cos(2*pi*6000*t);
N = length(x);
xdft = fft(x);
xdft = xdft(1:N/2+1);
psdx = (1/(Fs*N)) * abs(xdft).^2;
psdx(2:end-1) = 2*psdx(2:end-1);
freq = 0:Fs/length(x):Fs/2;
figure("name","Figure 1: Periodogram Using FFT")
plot(freq,10*log10(psdx))
grid on
title('Periodogram Using FFT')
xlabel('Frequency (Hz)')
ylabel('Power/Frequency (dB/Hz)')
%filter
%sampling frequency
Fs = length(x);
Fnyq = Fs/2;
fc = 2000;
hc = fir1(41,fc/Fs)
f_filt = filter( hc, 1, x );
N = length(f_filt);
xdft = fft(f_filt);
xdft = xdft(1:N/2+1);
psdx = (1/(Fs*N)) * abs(xdft).^2;
psdx(2:end-1) = 2*psdx(2:end-1);
freq = 0:Fs/length(x):Fs/2;
figure("name","Figure 2: Octave fir1 filtering");
plot( freq,10*log10(psdx) );
title("filtered fft");
figure("name","Figure 3: Octave fir1 filter response diagram");
freqz(hc);
title("coef freqz");
%draw my own filter results
fir_coef =[
-0.010354
-0.030296
-0.042441
-0.039618
-0.017884
0.021858
0.073577
0.127324
0.171679
0.196726
0.196726
0.171679
0.127324
0.073577
0.021858
-0.017884
-0.039618
-0.042441
-0.030296
-0.010354
];
my_hw = fir_coef;
figure("name","Figure 4: Verify filter using custom coefficients");
my_filt = filter(my_hw,1,x);
N = length(my_filt);
xdft = fft(my_filt);
xdft = xdft(1:N/2+1);
psdx = (1/(Fs*N)) * abs(xdft).^2;
psdx(2:end-1) = 2*psdx(2:end-1);
freq = 0:Fs/length(x):Fs/2;
plot( freq,10*log10(psdx) );
title("my filtered coeficients fft");
figure("name","Figure 5: Show custom filter response diagram");
freqz(my_hw);
title("my coef freqz");
```
## Source code
Snippet code is located at [http://git.main.lv/cgit.cgi/code-snippets.git/tree/fir1](http://git.main.lv/cgit.cgi/code-snippets.git/tree/fir1)
to compile get and compile code run
```
git clone http://git.main.lv/cgit.cgi/code-snippets.git
cd code-snippets/fir1
make
```
run program
```
./simple_fir
```
## Links
[main.lv/writeup/dsp_lp_filter.md](/writeup/dsp_lp_filter.md)
[http://git.main.lv/cgit.cgi/code-snippets.git/tree/fir1](http://git.main.lv/cgit.cgi/code-snippets.git/tree/fir1)
https://ccrma.stanford.edu/~jos/st/FFT_Simple_Sinusoid.html
https://ccrma.stanford.edu/~jos/st/Example_Applications_DFT.html
https://ccrma.stanford.edu/~jos/st/Use_Blackman_Window.html
http://www.iowahills.com/A7ExampleCodePage.html
|