summaryrefslogtreecommitdiff
path: root/airspyhf_waterfall.py
blob: f51935ea44d45209df2bc0b1f4ab32984fe9fb2d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#!/usr/bin/python3

import os
import sys
import math

import airspyhf

import matplotlib
import numpy
import pylab
import time
import threading

import pygame
from pygame import gfxdraw

CENTER_FREQ = 101000000
SAMPLE_RATE = 912e3
SAMPLE_NUM = 2048

SCREEN_X = 1025
SCREEN_Y = 320

MOVE_STEP = int(SAMPLE_RATE/8)

sample_lock = threading.Lock()

# init AIRSPY and if no then go out
airspy = airspyhf.AirSpyHF()
if airspy.open(device_index=0) == -1:
    print("Cant open airspyhf device")
    sys.exit(1)

# config rtlsdr device
airspy.set_samplerate(int(SAMPLE_RATE))
airspy.set_frequency(CENTER_FREQ)
airspy.set_hf_agc(1)
airspy.set_hf_agc_threshold(0)
airspy.set_hf_lna(1)


def iq_abs(c):
    return (math.sqrt((c.real ** 2 + c.imag ** 2)))


# point should be normalised to 0.0 ... 1.0
def color_normalise(point):
    ret = (255, 0, 0)
    # blue
    if point < 0.0:
        point = 0.0
    if (point < 0.3):
        ret = (0, 0, int(point * 255 * 3.3))
    # yello
    elif (point < 0.7):
        ret = (0, int((point - 0.3) * 255 * 2.5), 0)
    # red
    elif (point <= 1.0):
        ret = (int((point - 0.7) * 255 * 3.3), 0, 0)
    else:
        # print "Color Error ", point
        pass
    print(ret)
    return ret


def color_mapping(x):
    "assumes -50 to 0 range, returns color"

    #r = math.fabs(int(x))
    #if r > 255:
    #    r = 255
    #print("+",r)
    r = int((x + 120) * 255 // 30)
    #r = max(0, r)
    #r = min(255, r)
    if r > 255:
        r = 255
    if r < 0:
        r = 0
    res = (r, r, r)
    #avg3 = avg(r)/3
    #if avg3 < 0.3:
    #    res = (0, 0, int(avg3 * 255 * 3.3))

    print(res)
    return res
    #r = 255-r
    #print((int(r), int(r), 100))
    #return (int(r), int(r), 100)



# def draw_Hz( surface, x, y, hz ):


arr = [[0 for i in range(0, SCREEN_X)] for j in range(0, SCREEN_Y)]

# init all pygame modules audio,video and more
pygame.init()

# [NEW] creates screen surface using constants
screen = pygame.display.set_mode((SCREEN_X, SCREEN_Y))

#samples = rtl.read_samples(SAMPLE_NUM)
sample_buffer = []
def read_samples(transfer):
    global sample_buffer

    #print("callback")
    #print("Python call back")
    t = transfer.contents
    bytes_to_write = t.sample_count * 4 * 2
    #print("Received %d samples"%(t.sample_count))
    rx_buffer = t.samples
    #print(f"{bytes_to_write} bytes receieved")
    #sample_buffer.append(rx_buffer)
    if len(sample_buffer) > SAMPLE_NUM:
        return 0
    for i in range(0,t.sample_count):
        d_re = t.samples[i].re
        d_im = t.samples[i].im
        sample_buffer.append(math.sqrt(d_re*d_re+d_im*d_im))
        #data = struct.pack("<f",d_re) # FIX ?!
        #wave_file.writeframesraw(data)
        #data = struct.pack("<f", d_im)  # FIX ?!
        #wave_file.writeframesraw(data)
    #print("End call back")
    return 0

def get_samples():
    global sample_buffer
    buf_size = len(sample_buffer)

    if buf_size < SAMPLE_NUM:
        print("sample buffer small")
        return []
    #print("getting stuff ", buf_size)
    while sample_lock.locked():
        time.sleep(0.1)
    samples = sample_buffer.copy()
    sample_buffer = [] #!
    return samples[:SAMPLE_NUM]
    #if len(samples) == num:
    #    sample_buffer = []
    #    return samples
    #if len(samples) > num:
    #    arr = []
    #    times = len(samples)/num
    #    for i in range(0, num):
    #        avg = numpy.average(samples[times*num:times*num+times-1])
    #        arr.append(avg)
    #    return arr
    #else:
    #    print("Error in get_samples")
    #    return []
    return []

read_samples_cb = airspyhf.airspyhf_sample_block_cb_fn(read_samples)
airspy.start(read_samples_cb)

run = True
line = 0
while run and airspy.is_streaming():

    print("Loop tick")

    # check for all events that where ocure
    for event in pygame.event.get():
        # if some one clicked on close button
        if event.type == pygame.QUIT:
            # terminate programm
            run = False
            # don't waste your time by waiting while event loop will end
            break
        elif event.type == pygame.KEYDOWN:
            if event.key == pygame.K_LEFT:
                print("Left")
                # rtl.center_freq -= MOVE_STEP
                airspy.set_frequency(airspy.cur_freq - MOVE_STEP)
                # print("Center freq: ", rtl.center_freq, " Hz")
            elif event.key == pygame.K_RIGHT:
                print("Right")
                # rtl.center_freq += MOVE_STEP
                # print("Center freq: ", rtl.center_freq, " Hz")
                airspy.set_frequency(airspy.cur_freq + MOVE_STEP)

    width = SCREEN_X
    height = SCREEN_Y

    samples = get_samples()
    if samples == []:
        print("sample buffer is empty")
        time.sleep(1)
        continue
    #print(samples)
    spect = numpy.fft.fft(samples,n=SAMPLE_NUM)

    spect = spect[0:int((len(spect) / 2))]

    # (1/(Fs*N)) * abs(xdft).^2;
    spect_n = [(1.0 / (SAMPLE_NUM * len(spect))) * iq_abs(x) ** 2 for x in spect]
    spect_n = (10 * numpy.log10(spect_n)).tolist()

    print(spect_n)

    # total data size
    spect_len = len(spect_n)
    #print(spect_len)
    # calculate amount spect points per pixel without rounding
    pixel_width = int(spect_len / SCREEN_X + 1)
    #print(pixel_width)
    pixel_steps = int(spect_len / pixel_width)
    #print(pixel_steps)
    #print(spect_n)
    for step in range(0, pixel_steps):
        avg = 0.0
        for i in range(0, pixel_width):
            avg += spect_n[step * pixel_width + i]
        avg /= pixel_width
        if math.isinf(avg):
            avg = -1000

        # print avg
        #gfxdraw.pixel( screen, step, line, color_normalise((100-abs(avg))/10))
        #print(int(avg))
        gfxdraw.pixel(screen, step, line, color_mapping(int(avg)))

    # draw central freq
    font = pygame.font.Font(None, 20)
    text = font.render(str(airspy.cur_freq / 1e6), 1, (200, 30, 30), (0, 0, 0))
    screen.blit(text, (SCREEN_X / 2, SCREEN_Y - 20))
    text = font.render(str((airspy.cur_freq+ SAMPLE_RATE / 2) / 1e6), 1, (200, 30, 30), (0, 0, 0))
    screen.blit(text, (SCREEN_X - 40, SCREEN_Y - 20))
    text = font.render(str((airspy.cur_freq - SAMPLE_RATE / 2) / 1e6), 1, (200, 30, 30), (0, 0, 0))
    screen.blit(text, (20, SCREEN_Y - 20))

    pygame.display.flip()
    line += 1
    if (line > SCREEN_Y):
        line = 0
    time.sleep(0.1)

pygame.quit()

airspy.stop()
airspy.close()