aboutsummaryrefslogtreecommitdiffstats
path: root/utils/rtl_power.c
diff options
context:
space:
mode:
Diffstat (limited to 'utils/rtl_power.c')
-rw-r--r--utils/rtl_power.c1015
1 files changed, 0 insertions, 1015 deletions
diff --git a/utils/rtl_power.c b/utils/rtl_power.c
deleted file mode 100644
index 6204de2..0000000
--- a/utils/rtl_power.c
+++ /dev/null
@@ -1,1015 +0,0 @@
-/*
- * rtl-sdr, turns your Realtek RTL2832 based DVB dongle into a SDR receiver
- * Copyright (C) 2012 by Steve Markgraf <steve@steve-m.de>
- * Copyright (C) 2012 by Hoernchen <la@tfc-server.de>
- * Copyright (C) 2012 by Kyle Keen <keenerd@gmail.com>
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-
-/*
- * rtl_power: general purpose FFT integrator
- * -f low_freq:high_freq:max_bin_size
- * -i seconds
- * outputs CSV
- * time, low, high, step, db, db, db ...
- * db optional? raw output might be better for noise correction
- * todo:
- * threading
- * randomized hopping
- * noise correction
- * continuous IIR
- * general astronomy usefulness
- * multiple dongles
- * multiple FFT workers
- * check edge cropping for off-by-one and rounding errors
- * 1.8MS/s for hiding xtal harmonics
- */
-
-#include <errno.h>
-#include <signal.h>
-#include <string.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <time.h>
-
-#ifndef _WIN32
-#include <unistd.h>
-#else
-#include <windows.h>
-#include <fcntl.h>
-#include <io.h>
-#include "getopt/getopt.h"
-#define usleep(x) Sleep(x/1000)
-#if defined(_MSC_VER) && (_MSC_VER < 1800)
-#define round(x) (x > 0.0 ? floor(x + 0.5): ceil(x - 0.5))
-#endif
-#define _USE_MATH_DEFINES
-#endif
-
-#include <math.h>
-#include <pthread.h>
-#include <libusb.h>
-
-#include "rtl-sdr.h"
-#include "convenience/convenience.h"
-
-#define MAX(x, y) (((x) > (y)) ? (x) : (y))
-
-#define DEFAULT_BUF_LENGTH (1 * 16384)
-#define AUTO_GAIN -100
-#define BUFFER_DUMP (1<<12)
-
-#define MAXIMUM_RATE 2800000
-#define MINIMUM_RATE 1000000
-
-static volatile int do_exit = 0;
-static rtlsdr_dev_t *dev = NULL;
-FILE *file;
-
-int16_t* Sinewave;
-double* power_table;
-int N_WAVE, LOG2_N_WAVE;
-int next_power;
-int16_t *fft_buf;
-int *window_coefs;
-
-struct tuning_state
-/* one per tuning range */
-{
- int freq;
- int rate;
- int bin_e;
- long *avg; /* length == 2^bin_e */
- int samples;
- int downsample;
- int downsample_passes; /* for the recursive filter */
- double crop;
- //pthread_rwlock_t avg_lock;
- //pthread_mutex_t avg_mutex;
- /* having the iq buffer here is wasteful, but will avoid contention */
- uint8_t *buf8;
- int buf_len;
- //int *comp_fir;
- //pthread_rwlock_t buf_lock;
- //pthread_mutex_t buf_mutex;
-};
-
-/* 3000 is enough for 3GHz b/w worst case */
-#define MAX_TUNES 3000
-struct tuning_state tunes[MAX_TUNES];
-int tune_count = 0;
-
-int boxcar = 1;
-int comp_fir_size = 0;
-int peak_hold = 0;
-
-void usage(void)
-{
- fprintf(stderr,
- "rtl_power, a simple FFT logger for RTL2832 based DVB-T receivers\n\n"
- "Use:\trtl_power -f freq_range [-options] [filename]\n"
- "\t-f lower:upper:bin_size [Hz]\n"
- "\t (bin size is a maximum, smaller more convenient bins\n"
- "\t will be used. valid range 1Hz - 2.8MHz)\n"
- "\t[-i integration_interval (default: 10 seconds)]\n"
- "\t (buggy if a full sweep takes longer than the interval)\n"
- "\t[-1 enables single-shot mode (default: off)]\n"
- "\t[-e exit_timer (default: off/0)]\n"
- //"\t[-s avg/iir smoothing (default: avg)]\n"
- //"\t[-t threads (default: 1)]\n"
- "\t[-d device_index (default: 0)]\n"
- "\t[-g tuner_gain (default: automatic)]\n"
- "\t[-p ppm_error (default: 0)]\n"
- "\t[-T enable bias-T on GPIO PIN 0 (works for rtl-sdr.com v3 dongles)]\n"
- "\tfilename (a '-' dumps samples to stdout)\n"
- "\t (omitting the filename also uses stdout)\n"
- "\n"
- "Experimental options:\n"
- "\t[-w window (default: rectangle)]\n"
- "\t (hamming, blackman, blackman-harris, hann-poisson, bartlett, youssef)\n"
- // kaiser
- "\t[-c crop_percent (default: 0%%, recommended: 20%%-50%%)]\n"
- "\t (discards data at the edges, 100%% discards everything)\n"
- "\t (has no effect for bins larger than 1MHz)\n"
- "\t[-F fir_size (default: disabled)]\n"
- "\t (enables low-leakage downsample filter,\n"
- "\t fir_size can be 0 or 9. 0 has bad roll off,\n"
- "\t try with '-c 50%%')\n"
- "\t[-P enables peak hold (default: off)]\n"
- "\t[-D enable direct sampling (default: off)]\n"
- "\t[-O enable offset tuning (default: off)]\n"
- "\n"
- "CSV FFT output columns:\n"
- "\tdate, time, Hz low, Hz high, Hz step, samples, dbm, dbm, ...\n\n"
- "Examples:\n"
- "\trtl_power -f 88M:108M:125k fm_stations.csv\n"
- "\t (creates 160 bins across the FM band,\n"
- "\t individual stations should be visible)\n"
- "\trtl_power -f 100M:1G:1M -i 5m -1 survey.csv\n"
- "\t (a five minute low res scan of nearly everything)\n"
- "\trtl_power -f ... -i 15m -1 log.csv\n"
- "\t (integrate for 15 minutes and exit afterwards)\n"
- "\trtl_power -f ... -e 1h | gzip > log.csv.gz\n"
- "\t (collect data for one hour and compress it on the fly)\n\n"
- "Convert CSV to a waterfall graphic with:\n"
- "\t http://kmkeen.com/tmp/heatmap.py.txt \n");
- exit(1);
-}
-
-void multi_bail(void)
-{
- if (do_exit == 1)
- {
- fprintf(stderr, "Signal caught, finishing scan pass.\n");
- }
- if (do_exit >= 2)
- {
- fprintf(stderr, "Signal caught, aborting immediately.\n");
- }
-}
-
-#ifdef _WIN32
-BOOL WINAPI
-sighandler(int signum)
-{
- if (CTRL_C_EVENT == signum) {
- do_exit++;
- multi_bail();
- return TRUE;
- }
- return FALSE;
-}
-#else
-static void sighandler(int signum)
-{
- do_exit++;
- multi_bail();
-}
-#endif
-
-/* more cond dumbness */
-#define safe_cond_signal(n, m) pthread_mutex_lock(m); pthread_cond_signal(n); pthread_mutex_unlock(m)
-#define safe_cond_wait(n, m) pthread_mutex_lock(m); pthread_cond_wait(n, m); pthread_mutex_unlock(m)
-
-/* {length, coef, coef, coef} and scaled by 2^15
- for now, only length 9, optimal way to get +85% bandwidth */
-#define CIC_TABLE_MAX 10
-int cic_9_tables[][10] = {
- {0,},
- {9, -156, -97, 2798, -15489, 61019, -15489, 2798, -97, -156},
- {9, -128, -568, 5593, -24125, 74126, -24125, 5593, -568, -128},
- {9, -129, -639, 6187, -26281, 77511, -26281, 6187, -639, -129},
- {9, -122, -612, 6082, -26353, 77818, -26353, 6082, -612, -122},
- {9, -120, -602, 6015, -26269, 77757, -26269, 6015, -602, -120},
- {9, -120, -582, 5951, -26128, 77542, -26128, 5951, -582, -120},
- {9, -119, -580, 5931, -26094, 77505, -26094, 5931, -580, -119},
- {9, -119, -578, 5921, -26077, 77484, -26077, 5921, -578, -119},
- {9, -119, -577, 5917, -26067, 77473, -26067, 5917, -577, -119},
- {9, -199, -362, 5303, -25505, 77489, -25505, 5303, -362, -199},
-};
-
-#if defined(_MSC_VER) && (_MSC_VER < 1800)
-double log2(double n)
-{
- return log(n) / log(2.0);
-}
-#endif
-
-/* FFT based on fix_fft.c by Roberts, Slaney and Bouras
- http://www.jjj.de/fft/fftpage.html
- 16 bit ints for everything
- -32768..+32768 maps to -1.0..+1.0
-*/
-
-void sine_table(int size)
-{
- int i;
- double d;
- LOG2_N_WAVE = size;
- N_WAVE = 1 << LOG2_N_WAVE;
- Sinewave = malloc(sizeof(int16_t) * N_WAVE*3/4);
- power_table = malloc(sizeof(double) * N_WAVE);
- for (i=0; i<N_WAVE*3/4; i++)
- {
- d = (double)i * 2.0 * M_PI / N_WAVE;
- Sinewave[i] = (int)round(32767*sin(d));
- //printf("%i\n", Sinewave[i]);
- }
-}
-
-static inline int16_t FIX_MPY(int16_t a, int16_t b)
-/* fixed point multiply and scale */
-{
- int c = ((int)a * (int)b) >> 14;
- b = c & 0x01;
- return (c >> 1) + b;
-}
-
-int fix_fft(int16_t iq[], int m)
-/* interleaved iq[], 0 <= n < 2**m, changes in place */
-{
- int mr, nn, i, j, l, k, istep, n, shift;
- int16_t qr, qi, tr, ti, wr, wi;
- n = 1 << m;
- if (n > N_WAVE)
- {return -1;}
- mr = 0;
- nn = n - 1;
- /* decimation in time - re-order data */
- for (m=1; m<=nn; ++m) {
- l = n;
- do
- {l >>= 1;}
- while (mr+l > nn);
- mr = (mr & (l-1)) + l;
- if (mr <= m)
- {continue;}
- // real = 2*m, imag = 2*m+1
- tr = iq[2*m];
- iq[2*m] = iq[2*mr];
- iq[2*mr] = tr;
- ti = iq[2*m+1];
- iq[2*m+1] = iq[2*mr+1];
- iq[2*mr+1] = ti;
- }
- l = 1;
- k = LOG2_N_WAVE-1;
- while (l < n) {
- shift = 1;
- istep = l << 1;
- for (m=0; m<l; ++m) {
- j = m << k;
- wr = Sinewave[j+N_WAVE/4];
- wi = -Sinewave[j];
- if (shift) {
- wr >>= 1; wi >>= 1;}
- for (i=m; i<n; i+=istep) {
- j = i + l;
- tr = FIX_MPY(wr,iq[2*j]) - FIX_MPY(wi,iq[2*j+1]);
- ti = FIX_MPY(wr,iq[2*j+1]) + FIX_MPY(wi,iq[2*j]);
- qr = iq[2*i];
- qi = iq[2*i+1];
- if (shift) {
- qr >>= 1; qi >>= 1;}
- iq[2*j] = qr - tr;
- iq[2*j+1] = qi - ti;
- iq[2*i] = qr + tr;
- iq[2*i+1] = qi + ti;
- }
- }
- --k;
- l = istep;
- }
- return 0;
-}
-
-double rectangle(int i, int length)
-{
- return 1.0;
-}
-
-double hamming(int i, int length)
-{
- double a, b, w, N1;
- a = 25.0/46.0;
- b = 21.0/46.0;
- N1 = (double)(length-1);
- w = a - b*cos(2*i*M_PI/N1);
- return w;
-}
-
-double blackman(int i, int length)
-{
- double a0, a1, a2, w, N1;
- a0 = 7938.0/18608.0;
- a1 = 9240.0/18608.0;
- a2 = 1430.0/18608.0;
- N1 = (double)(length-1);
- w = a0 - a1*cos(2*i*M_PI/N1) + a2*cos(4*i*M_PI/N1);
- return w;
-}
-
-double blackman_harris(int i, int length)
-{
- double a0, a1, a2, a3, w, N1;
- a0 = 0.35875;
- a1 = 0.48829;
- a2 = 0.14128;
- a3 = 0.01168;
- N1 = (double)(length-1);
- w = a0 - a1*cos(2*i*M_PI/N1) + a2*cos(4*i*M_PI/N1) - a3*cos(6*i*M_PI/N1);
- return w;
-}
-
-double hann_poisson(int i, int length)
-{
- double a, N1, w;
- a = 2.0;
- N1 = (double)(length-1);
- w = 0.5 * (1 - cos(2*M_PI*i/N1)) * \
- pow(M_E, (-a*(double)abs((int)(N1-1-2*i)))/N1);
- return w;
-}
-
-double youssef(int i, int length)
-/* really a blackman-harris-poisson window, but that is a mouthful */
-{
- double a, a0, a1, a2, a3, w, N1;
- a0 = 0.35875;
- a1 = 0.48829;
- a2 = 0.14128;
- a3 = 0.01168;
- N1 = (double)(length-1);
- w = a0 - a1*cos(2*i*M_PI/N1) + a2*cos(4*i*M_PI/N1) - a3*cos(6*i*M_PI/N1);
- a = 0.0025;
- w *= pow(M_E, (-a*(double)abs((int)(N1-1-2*i)))/N1);
- return w;
-}
-
-double kaiser(int i, int length)
-// todo, become more smart
-{
- return 1.0;
-}
-
-double bartlett(int i, int length)
-{
- double N1, L, w;
- L = (double)length;
- N1 = L - 1;
- w = (i - N1/2) / (L/2);
- if (w < 0) {
- w = -w;}
- w = 1 - w;
- return w;
-}
-
-void rms_power(struct tuning_state *ts)
-/* for bins between 1MHz and 2MHz */
-{
- int i, s;
- uint8_t *buf = ts->buf8;
- int buf_len = ts->buf_len;
- long p, t;
- double dc, err;
-
- p = t = 0L;
- for (i=0; i<buf_len; i++) {
- s = (int)buf[i] - 127;
- t += (long)s;
- p += (long)(s * s);
- }
- /* correct for dc offset in squares */
- dc = (double)t / (double)buf_len;
- err = t * 2 * dc - dc * dc * buf_len;
- p -= (long)round(err);
-
- if (!peak_hold) {
- ts->avg[0] += p;
- } else {
- ts->avg[0] = MAX(ts->avg[0], p);
- }
- ts->samples += 1;
-}
-
-void frequency_range(char *arg, double crop)
-/* flesh out the tunes[] for scanning */
-// do we want the fewest ranges (easy) or the fewest bins (harder)?
-{
- char *start, *stop, *step;
- int i, j, upper, lower, max_size, bw_seen, bw_used, bin_e, buf_len;
- int downsample, downsample_passes;
- double bin_size;
- struct tuning_state *ts;
- /* hacky string parsing */
- start = arg;
- stop = strchr(start, ':') + 1;
- if (stop == (char *)1) {
- fprintf(stderr, "Bad frequency range specification: %s\n", arg);
- exit(1);
- }
- stop[-1] = '\0';
- step = strchr(stop, ':') + 1;
- if (step == (char *)1) {
- fprintf(stderr, "Bad frequency range specification: %s\n", arg);
- exit(1);
- }
- step[-1] = '\0';
- lower = (int)atofs(start);
- upper = (int)atofs(stop);
- max_size = (int)atofs(step);
- stop[-1] = ':';
- step[-1] = ':';
- downsample = 1;
- downsample_passes = 0;
- /* evenly sized ranges, as close to MAXIMUM_RATE as possible */
- // todo, replace loop with algebra
- for (i=1; i<1500; i++) {
- bw_seen = (upper - lower) / i;
- bw_used = (int)((double)(bw_seen) / (1.0 - crop));
- if (bw_used > MAXIMUM_RATE) {
- continue;}
- tune_count = i;
- break;
- }
- /* unless small bandwidth */
- if (bw_used < MINIMUM_RATE) {
- tune_count = 1;
- downsample = MAXIMUM_RATE / bw_used;
- bw_used = bw_used * downsample;
- }
- if (!boxcar && downsample > 1) {
- downsample_passes = (int)log2(downsample);
- downsample = 1 << downsample_passes;
- bw_used = (int)((double)(bw_seen * downsample) / (1.0 - crop));
- }
- /* number of bins is power-of-two, bin size is under limit */
- // todo, replace loop with log2
- for (i=1; i<=21; i++) {
- bin_e = i;
- bin_size = (double)bw_used / (double)((1<<i) * downsample);
- if (bin_size <= (double)max_size) {
- break;}
- }
- /* unless giant bins */
- if (max_size >= MINIMUM_RATE) {
- bw_seen = max_size;
- bw_used = max_size;
- tune_count = (upper - lower) / bw_seen;
- bin_e = 0;
- crop = 0;
- }
- if (tune_count > MAX_TUNES) {
- fprintf(stderr, "Error: bandwidth too wide.\n");
- exit(1);
- }
- buf_len = 2 * (1<<bin_e) * downsample;
- if (buf_len < DEFAULT_BUF_LENGTH) {
- buf_len = DEFAULT_BUF_LENGTH;
- }
- /* build the array */
- for (i=0; i<tune_count; i++) {
- ts = &tunes[i];
- ts->freq = lower + i*bw_seen + bw_seen/2;
- ts->rate = bw_used;
- ts->bin_e = bin_e;
- ts->samples = 0;
- ts->crop = crop;
- ts->downsample = downsample;
- ts->downsample_passes = downsample_passes;
- ts->avg = (long*)malloc((1<<bin_e) * sizeof(long));
- if (!ts->avg) {
- fprintf(stderr, "Error: malloc.\n");
- exit(1);
- }
- for (j=0; j<(1<<bin_e); j++) {
- ts->avg[j] = 0L;
- }
- ts->buf8 = (uint8_t*)malloc(buf_len * sizeof(uint8_t));
- if (!ts->buf8) {
- fprintf(stderr, "Error: malloc.\n");
- exit(1);
- }
- ts->buf_len = buf_len;
- }
- /* report */
- fprintf(stderr, "Number of frequency hops: %i\n", tune_count);
- fprintf(stderr, "Dongle bandwidth: %iHz\n", bw_used);
- fprintf(stderr, "Downsampling by: %ix\n", downsample);
- fprintf(stderr, "Cropping by: %0.2f%%\n", crop*100);
- fprintf(stderr, "Total FFT bins: %i\n", tune_count * (1<<bin_e));
- fprintf(stderr, "Logged FFT bins: %i\n", \
- (int)((double)(tune_count * (1<<bin_e)) * (1.0-crop)));
- fprintf(stderr, "FFT bin size: %0.2fHz\n", bin_size);
- fprintf(stderr, "Buffer size: %i bytes (%0.2fms)\n", buf_len, 1000 * 0.5 * (float)buf_len / (float)bw_used);
-}
-
-void retune(rtlsdr_dev_t *d, int freq)
-{
- uint8_t dump[BUFFER_DUMP];
- int n_read;
- rtlsdr_set_center_freq(d, (uint32_t)freq);
- /* wait for settling and flush buffer */
- usleep(5000);
- rtlsdr_read_sync(d, &dump, BUFFER_DUMP, &n_read);
- if (n_read != BUFFER_DUMP) {
- fprintf(stderr, "Error: bad retune.\n");}
-}
-
-void fifth_order(int16_t *data, int length)
-/* for half of interleaved data */
-{
- int i;
- int a, b, c, d, e, f;
- a = data[0];
- b = data[2];
- c = data[4];
- d = data[6];
- e = data[8];
- f = data[10];
- /* a downsample should improve resolution, so don't fully shift */
- /* ease in instead of being stateful */
- data[0] = ((a+b)*10 + (c+d)*5 + d + f) >> 4;
- data[2] = ((b+c)*10 + (a+d)*5 + e + f) >> 4;
- data[4] = (a + (b+e)*5 + (c+d)*10 + f) >> 4;
- for (i=12; i<length; i+=4) {
- a = c;
- b = d;
- c = e;
- d = f;
- e = data[i-2];
- f = data[i];
- data[i/2] = (a + (b+e)*5 + (c+d)*10 + f) >> 4;
- }
-}
-
-void remove_dc(int16_t *data, int length)
-/* works on interleaved data */
-{
- int i;
- int16_t ave;
- long sum = 0L;
- for (i=0; i < length; i+=2) {
- sum += data[i];
- }
- ave = (int16_t)(sum / (long)(length));
- if (ave == 0) {
- return;}
- for (i=0; i < length; i+=2) {
- data[i] -= ave;
- }
-}
-
-void generic_fir(int16_t *data, int length, int *fir)
-/* Okay, not at all generic. Assumes length 9, fix that eventually. */
-{
- int d, temp, sum;
- int hist[9] = {0,};
- /* cheat on the beginning, let it go unfiltered */
- for (d=0; d<18; d+=2) {
- hist[d/2] = data[d];
- }
- for (d=18; d<length; d+=2) {
- temp = data[d];
- sum = 0;
- sum += (hist[0] + hist[8]) * fir[1];
- sum += (hist[1] + hist[7]) * fir[2];
- sum += (hist[2] + hist[6]) * fir[3];
- sum += (hist[3] + hist[5]) * fir[4];
- sum += hist[4] * fir[5];
- data[d] = (int16_t)(sum >> 15) ;
- hist[0] = hist[1];
- hist[1] = hist[2];
- hist[2] = hist[3];
- hist[3] = hist[4];
- hist[4] = hist[5];
- hist[5] = hist[6];
- hist[6] = hist[7];
- hist[7] = hist[8];
- hist[8] = temp;
- }
-}
-
-void downsample_iq(int16_t *data, int length)
-{
- fifth_order(data, length);
- //remove_dc(data, length);
- fifth_order(data+1, length-1);
- //remove_dc(data+1, length-1);
-}
-
-long real_conj(int16_t real, int16_t imag)
-/* real(n * conj(n)) */
-{
- return ((long)real*(long)real + (long)imag*(long)imag);
-}
-
-void scanner(void)
-{
- int i, j, j2, f, n_read, offset, bin_e, bin_len, buf_len, ds, ds_p;
- int32_t w;
- struct tuning_state *ts;
- bin_e = tunes[0].bin_e;
- bin_len = 1 << bin_e;
- buf_len = tunes[0].buf_len;
- for (i=0; i<tune_count; i++) {
- if (do_exit >= 2)
- {return;}
- ts = &tunes[i];
- f = (int)rtlsdr_get_center_freq(dev);
- if (f != ts->freq) {
- retune(dev, ts->freq);}
- rtlsdr_read_sync(dev, ts->buf8, buf_len, &n_read);
- if (n_read != buf_len) {
- fprintf(stderr, "Error: dropped samples.\n");}
- /* rms */
- if (bin_len == 1) {
- rms_power(ts);
- continue;
- }
- /* prep for fft */
- for (j=0; j<buf_len; j++) {
- fft_buf[j] = (int16_t)ts->buf8[j] - 127;
- }
- ds = ts->downsample;
- ds_p = ts->downsample_passes;
- if (boxcar && ds > 1) {
- j=2, j2=0;
- while (j < buf_len) {
- fft_buf[j2] += fft_buf[j];
- fft_buf[j2+1] += fft_buf[j+1];
- fft_buf[j] = 0;
- fft_buf[j+1] = 0;
- j += 2;
- if (j % (ds*2) == 0) {
- j2 += 2;}
- }
- } else if (ds_p) { /* recursive */
- for (j=0; j < ds_p; j++) {
- downsample_iq(fft_buf, buf_len >> j);
- }
- /* droop compensation */
- if (comp_fir_size == 9 && ds_p <= CIC_TABLE_MAX) {
- generic_fir(fft_buf, buf_len >> j, cic_9_tables[ds_p]);
- generic_fir(fft_buf+1, (buf_len >> j)-1, cic_9_tables[ds_p]);
- }
- }
- remove_dc(fft_buf, buf_len / ds);
- remove_dc(fft_buf+1, (buf_len / ds) - 1);
- /* window function and fft */
- for (offset=0; offset<(buf_len/ds); offset+=(2*bin_len)) {
- // todo, let rect skip this
- for (j=0; j<bin_len; j++) {
- w = (int32_t)fft_buf[offset+j*2];
- w *= (int32_t)(window_coefs[j]);
- //w /= (int32_t)(ds);
- fft_buf[offset+j*2] = (int16_t)w;
- w = (int32_t)fft_buf[offset+j*2+1];
- w *= (int32_t)(window_coefs[j]);
- //w /= (int32_t)(ds);
- fft_buf[offset+j*2+1] = (int16_t)w;
- }
- fix_fft(fft_buf+offset, bin_e);
- if (!peak_hold) {
- for (j=0; j<bin_len; j++) {
- ts->avg[j] += real_conj(fft_buf[offset+j*2], fft_buf[offset+j*2+1]);
- }
- } else {
- for (j=0; j<bin_len; j++) {
- ts->avg[j] = MAX(real_conj(fft_buf[offset+j*2], fft_buf[offset+j*2+1]), ts->avg[j]);
- }
- }
- ts->samples += ds;
- }
- }
-}
-
-void csv_dbm(struct tuning_state *ts)
-{
- int i, len, ds, i1, i2, bw2, bin_count;
- long tmp;
- double dbm;
- len = 1 << ts->bin_e;
- ds = ts->downsample;
- /* fix FFT stuff quirks */
- if (ts->bin_e > 0) {
- /* nuke DC component (not effective for all windows) */
- ts->avg[0] = ts->avg[1];
- /* FFT is translated by 180 degrees */
- for (i=0; i<len/2; i++) {
- tmp = ts->avg[i];
- ts->avg[i] = ts->avg[i+len/2];
- ts->avg[i+len/2] = tmp;
- }
- }
- /* Hz low, Hz high, Hz step, samples, dbm, dbm, ... */
- bin_count = (int)((double)len * (1.0 - ts->crop));
- bw2 = (int)(((double)ts->rate * (double)bin_count) / (len * 2 * ds));
- fprintf(file, "%i, %i, %.2f, %i, ", ts->freq - bw2, ts->freq + bw2,
- (double)ts->rate / (double)(len*ds), ts->samples);
- // something seems off with the dbm math
- i1 = 0 + (int)((double)len * ts->crop * 0.5);
- i2 = (len-1) - (int)((double)len * ts->crop * 0.5);
- for (i=i1; i<=i2; i++) {
- dbm = (double)ts->avg[i];
- dbm /= (double)ts->rate;
- dbm /= (double)ts->samples;
- dbm = 10 * log10(dbm);
- fprintf(file, "%.2f, ", dbm);
- }
- dbm = (double)ts->avg[i2] / ((double)ts->rate * (double)ts->samples);
- if (ts->bin_e == 0) {
- dbm = ((double)ts->avg[0] / \
- ((double)ts->rate * (double)ts->samples));}
- dbm = 10 * log10(dbm);
- fprintf(file, "%.2f\n", dbm);
- for (i=0; i<len; i++) {
- ts->avg[i] = 0L;
- }
- ts->samples = 0;
-}
-
-int main(int argc, char **argv)
-{
-#ifndef _WIN32
- struct sigaction sigact;
-#endif
- char *filename = NULL;
- int i, length, r, opt, wb_mode = 0;
- int f_set = 0;
- int gain = AUTO_GAIN; // tenths of a dB
- int dev_index = 0;
- int dev_given = 0;
- int ppm_error = 0;
- int interval = 10;
- int fft_threads = 1;
- int smoothing = 0;
- int single = 0;
- int direct_sampling = 0;
- int offset_tuning = 0;
- int enable_biastee = 0;
- double crop = 0.0;
- char *freq_optarg;
- time_t next_tick;
- time_t time_now;
- time_t exit_time = 0;
- char t_str[50];
- struct tm *cal_time;
- double (*window_fn)(int, int) = rectangle;
- freq_optarg = "";
-
- while ((opt = getopt(argc, argv, "f:i:s:t:d:g:p:e:w:c:F:1PDOhT")) != -1) {
- switch (opt) {
- case 'f': // lower:upper:bin_size
- freq_optarg = strdup(optarg);
- f_set = 1;
- break;
- case 'd':
- dev_index = verbose_device_search(optarg);
- dev_given = 1;
- break;
- case 'g':
- gain = (int)(atof(optarg) * 10);
- break;
- case 'c':
- crop = atofp(optarg);
- break;
- case 'i':
- interval = (int)round(atoft(optarg));
- break;
- case 'e':
- exit_time = (time_t)((int)round(atoft(optarg)));
- break;
- case 's':
- if (strcmp("avg", optarg) == 0) {
- smoothing = 0;}
- if (strcmp("iir", optarg) == 0) {
- smoothing = 1;}
- break;
- case 'w':
- if (strcmp("rectangle", optarg) == 0) {
- window_fn = rectangle;}
- if (strcmp("hamming", optarg) == 0) {
- window_fn = hamming;}
- if (strcmp("blackman", optarg) == 0) {
- window_fn = blackman;}
- if (strcmp("blackman-harris", optarg) == 0) {
- window_fn = blackman_harris;}
- if (strcmp("hann-poisson", optarg) == 0) {
- window_fn = hann_poisson;}
- if (strcmp("youssef", optarg) == 0) {
- window_fn = youssef;}
- if (strcmp("kaiser", optarg) == 0) {
- window_fn = kaiser;}
- if (strcmp("bartlett", optarg) == 0) {
- window_fn = bartlett;}
- break;
- case 't':
- fft_threads = atoi(optarg);
- break;
- case 'p':
- ppm_error = atoi(optarg);
- break;
- case '1':
- single = 1;
- break;
- case 'P':
- peak_hold = 1;
- break;
- case 'D':
- direct_sampling = 1;
- break;
- case 'O':
- offset_tuning = 1;
- break;
- case 'F':
- boxcar = 0;
- comp_fir_size = atoi(optarg);
- break;
- case 'T':
- enable_biastee = 1;
- break;
- case 'h':
- default:
- usage();
- break;
- }
- }
-
- if (!f_set) {
- fprintf(stderr, "No frequency range provided.\n");
- exit(1);
- }
-
- if ((crop < 0.0) || (crop > 1.0)) {
- fprintf(stderr, "Crop value outside of 0 to 1.\n");
- exit(1);
- }
-
- frequency_range(freq_optarg, crop);
-
- if (tune_count == 0) {
- usage();}
-
- if (argc <= optind) {
- filename = "-";
- } else {
- filename = argv[optind];
- }
-
- if (interval < 1) {
- interval = 1;}
-
- fprintf(stderr, "Reporting every %i seconds\n", interval);
-
- if (!dev_given) {
- dev_index = verbose_device_search("0");
- }
-
- if (dev_index < 0) {
- exit(1);
- }
-
- r = rtlsdr_open(&dev, (uint32_t)dev_index);
- if (r < 0) {
- fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dev_index);
- exit(1);
- }
-#ifndef _WIN32
- sigact.sa_handler = sighandler;
- sigemptyset(&sigact.sa_mask);
- sigact.sa_flags = 0;
- sigaction(SIGINT, &sigact, NULL);
- sigaction(SIGTERM, &sigact, NULL);
- sigaction(SIGQUIT, &sigact, NULL);
- sigaction(SIGPIPE, &sigact, NULL);
-#else
- SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE );
-#endif
-
- if (direct_sampling) {
- verbose_direct_sampling(dev, 1);
- }
-
- if (offset_tuning) {
- verbose_offset_tuning(dev);
- }
-
- /* Set the tuner gain */
- if (gain == AUTO_GAIN) {
- verbose_auto_gain(dev);
- } else {
- gain = nearest_gain(dev, gain);
- verbose_gain_set(dev, gain);
- }
-
- verbose_ppm_set(dev, ppm_error);
-
- rtlsdr_set_bias_tee(dev, enable_biastee);
- if (enable_biastee)
- fprintf(stderr, "activated bias-T on GPIO PIN 0\n");
-
- if (strcmp(filename, "-") == 0) { /* Write log to stdout */
- file = stdout;
-#ifdef _WIN32
- // Is this necessary? Output is ascii.
- _setmode(_fileno(file), _O_BINARY);
-#endif
- } else {
- file = fopen(filename, "wb");
- if (!file) {
- fprintf(stderr, "Failed to open %s\n", filename);
- exit(1);
- }
- }
-
- /* Reset endpoint before we start reading from it (mandatory) */
- verbose_reset_buffer(dev);
-
- /* actually do stuff */
- rtlsdr_set_sample_rate(dev, (uint32_t)tunes[0].rate);
- sine_table(tunes[0].bin_e);
- next_tick = time(NULL) + interval;
- if (exit_time) {
- exit_time = time(NULL) + exit_time;}
- fft_buf = malloc(tunes[0].buf_len * sizeof(int16_t));
- length = 1 << tunes[0].bin_e;
- window_coefs = malloc(length * sizeof(int));
- for (i=0; i<length; i++) {
- window_coefs[i] = (int)(256*window_fn(i, length));
- }
- while (!do_exit) {
- scanner();
- time_now = time(NULL);
- if (time_now < next_tick) {
- continue;}
- // time, Hz low, Hz high, Hz step, samples, dbm, dbm, ...
- cal_time = localtime(&time_now);
- strftime(t_str, 50, "%Y-%m-%d, %H:%M:%S", cal_time);
- for (i=0; i<tune_count; i++) {
- fprintf(file, "%s, ", t_str);
- csv_dbm(&tunes[i]);
- }
- fflush(file);
- while (time(NULL) >= next_tick) {
- next_tick += interval;}
- if (single) {
- do_exit = 1;}
- if (exit_time && time(NULL) >= exit_time) {
- do_exit = 1;}
- }
-
- /* clean up */
-
- if (do_exit) {
- fprintf(stderr, "\nUser cancel, exiting...\n");}
- else {
- fprintf(stderr, "\nLibrary error %d, exiting...\n", r);}
-
- if (file != stdout) {
- fclose(file);}
-
- rtlsdr_close(dev);
- free(fft_buf);
- free(window_coefs);
- //for (i=0; i<tune_count; i++) {
- // free(tunes[i].avg);
- // free(tunes[i].buf8);
- //}
- return r >= 0 ? r : -r;
-}
-
-// vim: tabstop=8:softtabstop=8:shiftwidth=8:noexpandtab