1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
|
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <complex.h>
#include <sys/timeb.h>
#include <hw/hw.h>
#include <hw/sdr.h>
#define SAMPLE_RATE 1000000
#define RESAMPLE_RATE 50000
#define CENTER_FREQ 101100000
#define FFT_LEVEL 10
#define FFT_SIZE (1 << FFT_LEVEL)
#define SAMPLE_LENGHT (2 * FFT_SIZE)
#define PRESCALE 8
#define POSTSCALE 2
void helper( char *exec_name )
{
const char help_str[]="Usage: ./%s [OPTIONS]\n\
-f [FREQ] - set center frequency\n\
-s [SAMPLE] - set sample rate\n\
-d [DEVICE] - choose device\n\
-r [RESAMPE] - set resample rate\n\
-? - print help\n\
";
printf( help_str, exec_name );
}
unsigned int super_atan( signed int x1, signed int y1 )
{
// Fast XY vector to integer degree algorithm - Jan 2011 www.RomanBlack.com
// Converts any XY values including 0 to a degree value that should be
// within +/- 1 degree of the accurate value without needing
// large slow trig functions like ArcTan() or ArcCos().
// NOTE! at least one of the X or Y values must be non-zero!
// This is the full version, for all 4 quadrants and will generate
// the angle in integer degrees from 0-360.
// Any values of X and Y are usable including negative values provided
// they are between -1456 and 1456 so the 16bit multiply does not overflow.
unsigned char negflag;
unsigned char tempdegree;
unsigned char comp;
unsigned int degree; // this will hold the result
signed int x=x1; // these hold the XY vector at the start
signed int y=y1; // (and they will be destroyed)
unsigned int ux;
unsigned int uy;
// Save the sign flags then remove signs and get XY as unsigned ints
negflag = 0;
if(x < 0)
{
negflag += 0x01; // x flag bit
x = (0 - x); // is now +
}
ux = x; // copy to unsigned var before multiply
if(y < 0)
{
negflag += 0x02; // y flag bit
y = (0 - y); // is now +
}
uy = y; // copy to unsigned var before multiply
// 1. Calc the scaled "degrees"
if(ux > uy)
{
degree = (uy * 45) / ux; // degree result will be 0-45 range
negflag += 0x10; // octant flag bit
}
else
{
degree = (ux * 45) / uy; // degree result will be 0-45 range
}
// 2. Compensate for the 4 degree error curve
comp = 0;
tempdegree = degree; // use an unsigned char for speed!
if(tempdegree > 22) // if top half of range
{
if(tempdegree <= 44) comp++;
if(tempdegree <= 41) comp++;
if(tempdegree <= 37) comp++;
if(tempdegree <= 32) comp++; // max is 4 degrees compensated
}
else // else is lower half of range
{
if(tempdegree >= 2) comp++;
if(tempdegree >= 6) comp++;
if(tempdegree >= 10) comp++;
if(tempdegree >= 15) comp++; // max is 4 degrees compensated
}
degree += comp; // degree is now accurate to +/- 1 degree!
// Invert degree if it was X>Y octant, makes 0-45 into 90-45
if(negflag & 0x10) degree = (90 - degree);
// 3. Degree is now 0-90 range for this quadrant,
// need to invert it for whichever quadrant it was in
if(negflag & 0x02) // if -Y
{
if(negflag & 0x01) // if -Y -X
degree = (180 + degree);
else // else is -Y +X
degree = (180 - degree);
}
else // else is +Y
{
if(negflag & 0x01) // if +Y -X
degree = (360 - degree);
}
return degree;
}
/*
Page about div
http://bisqwit.iki.fi/story/howto/bitmath/#DivAndModDivisionAndModulo
*/
uint8_t super_div20u8( uint16_t num )
{
uint16_t a = num;
uint16_t b = 20;
uint16_t r = 0;
uint16_t m = 1;
while ( b < a )
{
b = b << 1;
m = m << 1;
}
do
{
if ( a >= b )
{
a = a - b;
r = r + m;
}
b = b >> 1;
m = m >> 1;
} while ( m != 0 );
return (uint8_t)r;
}
void rotate_90(uint8_t *buf, uint32_t len)
/* 90 rotation is 1+0j, 0+1j, -1+0j, 0-1j
or [0, 1, -3, 2, -4, -5, 7, -6] */
{
uint32_t i;
uint8_t tmp;
for (i=0; i<len; i+=8) {
/* uint8_t negation = 255 - x */
tmp = 255 - buf[i+3];
buf[i+3] = buf[i+2];
buf[i+2] = tmp;
buf[i+4] = 255 - buf[i+4];
buf[i+5] = 255 - buf[i+5];
tmp = 255 - buf[i+6];
buf[i+6] = buf[i+7];
buf[i+7] = tmp;
}
}
float to_float(uint8_t x) {
return (1.0f/127.0f)*(((float)x)-127.0f);
}
//float ph_ch( uint8_t i1, uint8_t q1, uint8_t i2, uint8_t q2)
float ph_ch( uint8_t i1, uint8_t q1 )
{
static float complex last=CMPLXF(0.0f, 0.0f);
float out;
float complex xy,c1;
//float c2;
//c1 = to_float(i1) + I*to_float(q1);
c1 = CMPLXF( to_float(i1), to_float(q1) );
//c2 = to_float(i2) + I*to_float(q2);
//c2 = CMPLXF( to_float(i2), to_float(q2) );
xy = conjf(last)*c1;
out = cargf( xy );
last = c1;
return out;
}
//delay filtering
void delay_filt( uint8_t *buf, int buf_len )
{
//delay length
const int n=10;
int i=0;
uint32_t cycle=0;
uint32_t avg_i=0, avg_q=0;
uint32_t cyc_buffer_i[n],delay_i=0;
uint32_t cyc_buffer_q[n],delay_q=0;
uint8_t in1=0,in2=0,out1=0,out2=0;
memset( cyc_buffer_i, 0, n*sizeof(uint32_t) );
memset( cyc_buffer_q, 0, n*sizeof(uint32_t) );
//for (i=0; i<(buf_len-(n*2));i+=2)
for (i=0 ; i<(buf_len-1) ; i+=2 )
//for (i=0; i<1000; i+=2)
{
in1 = buf[i];
in2 = buf[i+1];
//average
avg_i += (uint32_t)in1;
avg_q += (uint32_t)in2;
delay_i = cyc_buffer_i[cycle];
delay_q = cyc_buffer_q[cycle];
cyc_buffer_i[cycle] = avg_i;
cyc_buffer_q[cycle] = avg_q;
cycle = cycle + 1;
if ( cycle >= n )
{
cycle = 0;
}
out1 = (avg_i - delay_i)/n;
out2 = (avg_q - delay_q)/n;
buf[i] = out1;
buf[i+1] = out2;
//printf("%d,avg=[%d,%d],delay=[%d,%d],in=[%d,%d],out=[%d,%d]\n",
// cycle, avg_i,avg_q,delay_i,delay_q,in1,in2,out1,out2);
}
}
int main( int argc, char **argv )
{
int c;
int ret;
int i,j,m;
uint8_t *buf, *sample_buf;
float *fbuf;
signed short *sound_buf;
int buf_len, sample_len;
//commandline config params
int config_device = 0;
uint32_t config_freq = CENTER_FREQ;
uint32_t config_sample_rate = SAMPLE_RATE;
uint32_t config_resample_rate = RESAMPLE_RATE;
sdr_t *sdr = NULL;
dongle_t *dongle = NULL;
struct timeb tb;
// get all argument configs
opterr = 0;
while ( (c = getopt(argc, argv, "f:s:d:")) != -1 )
{
switch ( c )
{
case 'f':
config_freq = atoi( optarg );
break;
case 's':
config_sample_rate = atoi( optarg );
break;
case 'd':
//printf(" %s \n", optarg);
config_device = atoi( optarg );
break;
case '?':
helper( argv[0] );
break;
case ':':
printf("\n");
break;
default:
printf("Unknow option\n");
return -1;
}
}
if ( (sdr = sdr_init()) == NULL )
{
printf("Cannot init sdr manager\n");
sdr = NULL;
goto main_exit;
}
if ( sdr_open_device( sdr, config_device ) != 0 )
{
printf("MAIN:Cannot open device %d\n", config_device);
sdr->dongle = NULL;
goto main_exit;
}
dongle = sdr_get_device_id( sdr, config_device );
ret = 0;
ret != dongle_set_freq( dongle, config_freq );
ret != dongle_set_sample_rate( dongle, config_sample_rate );
ret != dongle_set_gain( dongle, 0 );
ret != dongle_set_agc( dongle, 10 );
if (ret != 0)
{
printf("Cannot properly config device\n");
}
sample_len = SAMPLE_LENGHT;
sample_buf = malloc( SAMPLE_LENGHT );
fbuf = malloc( SAMPLE_LENGHT*sizeof(float) );
sound_buf = malloc( (SAMPLE_LENGHT/20)*sizeof(signed short) );
while ( 1 )
{
//read plain samples
dongle_read_samples( dongle, sample_buf, SAMPLE_LENGHT );
//convert data to float
//for ( i=0; i<sample_len; i++)
//{
// fbuf[i] = to_float(sample_buf[i]);
//}
//delay boxed filter
delay_filt( sample_buf, sample_len );
//rotate by 90 degrees uint8_t
//rotate_90( sample_buf, sample_len );
//with unsigned data phace change
#if 0
for (i=0,j=0; i<sample_len-2; i+=2,j++)
{
uint8_t c[2];
uint8_t *a=&sample_buf[i], *b=&sample_buf[i+2];
double angle;
float pcm;
c[0] = a[0]*b[0] - a[1]*b[1];
c[1] = a[1]*b[0] + a[0]*b[1];
angle = atan2((double)c[1],(double)c[0]);
pcm = (int)(angle / 3.14159 * (1<<14));
fbuf[j] = pcm;
}
#endif
//phase change with float
for (i=0; i<SAMPLE_LENGHT-4; i+=2)
{
//fbuf[i] = ph_ch( sample_buf[i], sample_buf[i+1],
// sample_buf[i+2], sample_buf[i+3] );
fbuf[i] = ph_ch( sample_buf[i], sample_buf[i+1]);
}
//downsample
//sample rate 1Mhz downsample to 50Khz
for ( i=0,m=0; i<SAMPLE_LENGHT; i+=20, m+=1 )
{
float sum=0.0;
for (j=i;j<i+20;j++)
{
sum += fbuf[j];
}
//sound_buf[m] = (signed short)(10000.0f*(sum/20.0));
sound_buf[m] = (signed short)(10000.0f*(sum/20.0));
}
//write to play
write(1, sound_buf, ((SAMPLE_LENGHT/20)*sizeof(signed short)));
//ftime(&tb);
//printf("%d\n",tb.millitm);
//exit(0);
//usleep(1);
//printf("Sample\n");
}
main_exit:
sdr_close(0);
return 0;
}
|