diff options
author | ZoRo <dos21h@gmail.com> | 2022-02-19 21:51:49 +0000 |
---|---|---|
committer | ZoRo <dos21h@gmail.com> | 2022-02-19 21:51:49 +0000 |
commit | e82d475b7bbb2e3ba0388cad069eedf46f4ae363 (patch) | |
tree | ecccf8000ce8266c6eef1d04e0bc1c1e61a0984c /src/rtl_power.c | |
download | r820t-utils-e82d475b7bbb2e3ba0388cad069eedf46f4ae363.tar.gz r820t-utils-e82d475b7bbb2e3ba0388cad069eedf46f4ae363.zip |
Initial
Diffstat (limited to 'src/rtl_power.c')
-rw-r--r-- | src/rtl_power.c | 1015 |
1 files changed, 1015 insertions, 0 deletions
diff --git a/src/rtl_power.c b/src/rtl_power.c new file mode 100644 index 0000000..6204de2 --- /dev/null +++ b/src/rtl_power.c @@ -0,0 +1,1015 @@ +/* + * rtl-sdr, turns your Realtek RTL2832 based DVB dongle into a SDR receiver + * Copyright (C) 2012 by Steve Markgraf <steve@steve-m.de> + * Copyright (C) 2012 by Hoernchen <la@tfc-server.de> + * Copyright (C) 2012 by Kyle Keen <keenerd@gmail.com> + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + + +/* + * rtl_power: general purpose FFT integrator + * -f low_freq:high_freq:max_bin_size + * -i seconds + * outputs CSV + * time, low, high, step, db, db, db ... + * db optional? raw output might be better for noise correction + * todo: + * threading + * randomized hopping + * noise correction + * continuous IIR + * general astronomy usefulness + * multiple dongles + * multiple FFT workers + * check edge cropping for off-by-one and rounding errors + * 1.8MS/s for hiding xtal harmonics + */ + +#include <errno.h> +#include <signal.h> +#include <string.h> +#include <stdio.h> +#include <stdlib.h> +#include <time.h> + +#ifndef _WIN32 +#include <unistd.h> +#else +#include <windows.h> +#include <fcntl.h> +#include <io.h> +#include "getopt/getopt.h" +#define usleep(x) Sleep(x/1000) +#if defined(_MSC_VER) && (_MSC_VER < 1800) +#define round(x) (x > 0.0 ? floor(x + 0.5): ceil(x - 0.5)) +#endif +#define _USE_MATH_DEFINES +#endif + +#include <math.h> +#include <pthread.h> +#include <libusb.h> + +#include "rtl-sdr.h" +#include "convenience/convenience.h" + +#define MAX(x, y) (((x) > (y)) ? (x) : (y)) + +#define DEFAULT_BUF_LENGTH (1 * 16384) +#define AUTO_GAIN -100 +#define BUFFER_DUMP (1<<12) + +#define MAXIMUM_RATE 2800000 +#define MINIMUM_RATE 1000000 + +static volatile int do_exit = 0; +static rtlsdr_dev_t *dev = NULL; +FILE *file; + +int16_t* Sinewave; +double* power_table; +int N_WAVE, LOG2_N_WAVE; +int next_power; +int16_t *fft_buf; +int *window_coefs; + +struct tuning_state +/* one per tuning range */ +{ + int freq; + int rate; + int bin_e; + long *avg; /* length == 2^bin_e */ + int samples; + int downsample; + int downsample_passes; /* for the recursive filter */ + double crop; + //pthread_rwlock_t avg_lock; + //pthread_mutex_t avg_mutex; + /* having the iq buffer here is wasteful, but will avoid contention */ + uint8_t *buf8; + int buf_len; + //int *comp_fir; + //pthread_rwlock_t buf_lock; + //pthread_mutex_t buf_mutex; +}; + +/* 3000 is enough for 3GHz b/w worst case */ +#define MAX_TUNES 3000 +struct tuning_state tunes[MAX_TUNES]; +int tune_count = 0; + +int boxcar = 1; +int comp_fir_size = 0; +int peak_hold = 0; + +void usage(void) +{ + fprintf(stderr, + "rtl_power, a simple FFT logger for RTL2832 based DVB-T receivers\n\n" + "Use:\trtl_power -f freq_range [-options] [filename]\n" + "\t-f lower:upper:bin_size [Hz]\n" + "\t (bin size is a maximum, smaller more convenient bins\n" + "\t will be used. valid range 1Hz - 2.8MHz)\n" + "\t[-i integration_interval (default: 10 seconds)]\n" + "\t (buggy if a full sweep takes longer than the interval)\n" + "\t[-1 enables single-shot mode (default: off)]\n" + "\t[-e exit_timer (default: off/0)]\n" + //"\t[-s avg/iir smoothing (default: avg)]\n" + //"\t[-t threads (default: 1)]\n" + "\t[-d device_index (default: 0)]\n" + "\t[-g tuner_gain (default: automatic)]\n" + "\t[-p ppm_error (default: 0)]\n" + "\t[-T enable bias-T on GPIO PIN 0 (works for rtl-sdr.com v3 dongles)]\n" + "\tfilename (a '-' dumps samples to stdout)\n" + "\t (omitting the filename also uses stdout)\n" + "\n" + "Experimental options:\n" + "\t[-w window (default: rectangle)]\n" + "\t (hamming, blackman, blackman-harris, hann-poisson, bartlett, youssef)\n" + // kaiser + "\t[-c crop_percent (default: 0%%, recommended: 20%%-50%%)]\n" + "\t (discards data at the edges, 100%% discards everything)\n" + "\t (has no effect for bins larger than 1MHz)\n" + "\t[-F fir_size (default: disabled)]\n" + "\t (enables low-leakage downsample filter,\n" + "\t fir_size can be 0 or 9. 0 has bad roll off,\n" + "\t try with '-c 50%%')\n" + "\t[-P enables peak hold (default: off)]\n" + "\t[-D enable direct sampling (default: off)]\n" + "\t[-O enable offset tuning (default: off)]\n" + "\n" + "CSV FFT output columns:\n" + "\tdate, time, Hz low, Hz high, Hz step, samples, dbm, dbm, ...\n\n" + "Examples:\n" + "\trtl_power -f 88M:108M:125k fm_stations.csv\n" + "\t (creates 160 bins across the FM band,\n" + "\t individual stations should be visible)\n" + "\trtl_power -f 100M:1G:1M -i 5m -1 survey.csv\n" + "\t (a five minute low res scan of nearly everything)\n" + "\trtl_power -f ... -i 15m -1 log.csv\n" + "\t (integrate for 15 minutes and exit afterwards)\n" + "\trtl_power -f ... -e 1h | gzip > log.csv.gz\n" + "\t (collect data for one hour and compress it on the fly)\n\n" + "Convert CSV to a waterfall graphic with:\n" + "\t http://kmkeen.com/tmp/heatmap.py.txt \n"); + exit(1); +} + +void multi_bail(void) +{ + if (do_exit == 1) + { + fprintf(stderr, "Signal caught, finishing scan pass.\n"); + } + if (do_exit >= 2) + { + fprintf(stderr, "Signal caught, aborting immediately.\n"); + } +} + +#ifdef _WIN32 +BOOL WINAPI +sighandler(int signum) +{ + if (CTRL_C_EVENT == signum) { + do_exit++; + multi_bail(); + return TRUE; + } + return FALSE; +} +#else +static void sighandler(int signum) +{ + do_exit++; + multi_bail(); +} +#endif + +/* more cond dumbness */ +#define safe_cond_signal(n, m) pthread_mutex_lock(m); pthread_cond_signal(n); pthread_mutex_unlock(m) +#define safe_cond_wait(n, m) pthread_mutex_lock(m); pthread_cond_wait(n, m); pthread_mutex_unlock(m) + +/* {length, coef, coef, coef} and scaled by 2^15 + for now, only length 9, optimal way to get +85% bandwidth */ +#define CIC_TABLE_MAX 10 +int cic_9_tables[][10] = { + {0,}, + {9, -156, -97, 2798, -15489, 61019, -15489, 2798, -97, -156}, + {9, -128, -568, 5593, -24125, 74126, -24125, 5593, -568, -128}, + {9, -129, -639, 6187, -26281, 77511, -26281, 6187, -639, -129}, + {9, -122, -612, 6082, -26353, 77818, -26353, 6082, -612, -122}, + {9, -120, -602, 6015, -26269, 77757, -26269, 6015, -602, -120}, + {9, -120, -582, 5951, -26128, 77542, -26128, 5951, -582, -120}, + {9, -119, -580, 5931, -26094, 77505, -26094, 5931, -580, -119}, + {9, -119, -578, 5921, -26077, 77484, -26077, 5921, -578, -119}, + {9, -119, -577, 5917, -26067, 77473, -26067, 5917, -577, -119}, + {9, -199, -362, 5303, -25505, 77489, -25505, 5303, -362, -199}, +}; + +#if defined(_MSC_VER) && (_MSC_VER < 1800) +double log2(double n) +{ + return log(n) / log(2.0); +} +#endif + +/* FFT based on fix_fft.c by Roberts, Slaney and Bouras + http://www.jjj.de/fft/fftpage.html + 16 bit ints for everything + -32768..+32768 maps to -1.0..+1.0 +*/ + +void sine_table(int size) +{ + int i; + double d; + LOG2_N_WAVE = size; + N_WAVE = 1 << LOG2_N_WAVE; + Sinewave = malloc(sizeof(int16_t) * N_WAVE*3/4); + power_table = malloc(sizeof(double) * N_WAVE); + for (i=0; i<N_WAVE*3/4; i++) + { + d = (double)i * 2.0 * M_PI / N_WAVE; + Sinewave[i] = (int)round(32767*sin(d)); + //printf("%i\n", Sinewave[i]); + } +} + +static inline int16_t FIX_MPY(int16_t a, int16_t b) +/* fixed point multiply and scale */ +{ + int c = ((int)a * (int)b) >> 14; + b = c & 0x01; + return (c >> 1) + b; +} + +int fix_fft(int16_t iq[], int m) +/* interleaved iq[], 0 <= n < 2**m, changes in place */ +{ + int mr, nn, i, j, l, k, istep, n, shift; + int16_t qr, qi, tr, ti, wr, wi; + n = 1 << m; + if (n > N_WAVE) + {return -1;} + mr = 0; + nn = n - 1; + /* decimation in time - re-order data */ + for (m=1; m<=nn; ++m) { + l = n; + do + {l >>= 1;} + while (mr+l > nn); + mr = (mr & (l-1)) + l; + if (mr <= m) + {continue;} + // real = 2*m, imag = 2*m+1 + tr = iq[2*m]; + iq[2*m] = iq[2*mr]; + iq[2*mr] = tr; + ti = iq[2*m+1]; + iq[2*m+1] = iq[2*mr+1]; + iq[2*mr+1] = ti; + } + l = 1; + k = LOG2_N_WAVE-1; + while (l < n) { + shift = 1; + istep = l << 1; + for (m=0; m<l; ++m) { + j = m << k; + wr = Sinewave[j+N_WAVE/4]; + wi = -Sinewave[j]; + if (shift) { + wr >>= 1; wi >>= 1;} + for (i=m; i<n; i+=istep) { + j = i + l; + tr = FIX_MPY(wr,iq[2*j]) - FIX_MPY(wi,iq[2*j+1]); + ti = FIX_MPY(wr,iq[2*j+1]) + FIX_MPY(wi,iq[2*j]); + qr = iq[2*i]; + qi = iq[2*i+1]; + if (shift) { + qr >>= 1; qi >>= 1;} + iq[2*j] = qr - tr; + iq[2*j+1] = qi - ti; + iq[2*i] = qr + tr; + iq[2*i+1] = qi + ti; + } + } + --k; + l = istep; + } + return 0; +} + +double rectangle(int i, int length) +{ + return 1.0; +} + +double hamming(int i, int length) +{ + double a, b, w, N1; + a = 25.0/46.0; + b = 21.0/46.0; + N1 = (double)(length-1); + w = a - b*cos(2*i*M_PI/N1); + return w; +} + +double blackman(int i, int length) +{ + double a0, a1, a2, w, N1; + a0 = 7938.0/18608.0; + a1 = 9240.0/18608.0; + a2 = 1430.0/18608.0; + N1 = (double)(length-1); + w = a0 - a1*cos(2*i*M_PI/N1) + a2*cos(4*i*M_PI/N1); + return w; +} + +double blackman_harris(int i, int length) +{ + double a0, a1, a2, a3, w, N1; + a0 = 0.35875; + a1 = 0.48829; + a2 = 0.14128; + a3 = 0.01168; + N1 = (double)(length-1); + w = a0 - a1*cos(2*i*M_PI/N1) + a2*cos(4*i*M_PI/N1) - a3*cos(6*i*M_PI/N1); + return w; +} + +double hann_poisson(int i, int length) +{ + double a, N1, w; + a = 2.0; + N1 = (double)(length-1); + w = 0.5 * (1 - cos(2*M_PI*i/N1)) * \ + pow(M_E, (-a*(double)abs((int)(N1-1-2*i)))/N1); + return w; +} + +double youssef(int i, int length) +/* really a blackman-harris-poisson window, but that is a mouthful */ +{ + double a, a0, a1, a2, a3, w, N1; + a0 = 0.35875; + a1 = 0.48829; + a2 = 0.14128; + a3 = 0.01168; + N1 = (double)(length-1); + w = a0 - a1*cos(2*i*M_PI/N1) + a2*cos(4*i*M_PI/N1) - a3*cos(6*i*M_PI/N1); + a = 0.0025; + w *= pow(M_E, (-a*(double)abs((int)(N1-1-2*i)))/N1); + return w; +} + +double kaiser(int i, int length) +// todo, become more smart +{ + return 1.0; +} + +double bartlett(int i, int length) +{ + double N1, L, w; + L = (double)length; + N1 = L - 1; + w = (i - N1/2) / (L/2); + if (w < 0) { + w = -w;} + w = 1 - w; + return w; +} + +void rms_power(struct tuning_state *ts) +/* for bins between 1MHz and 2MHz */ +{ + int i, s; + uint8_t *buf = ts->buf8; + int buf_len = ts->buf_len; + long p, t; + double dc, err; + + p = t = 0L; + for (i=0; i<buf_len; i++) { + s = (int)buf[i] - 127; + t += (long)s; + p += (long)(s * s); + } + /* correct for dc offset in squares */ + dc = (double)t / (double)buf_len; + err = t * 2 * dc - dc * dc * buf_len; + p -= (long)round(err); + + if (!peak_hold) { + ts->avg[0] += p; + } else { + ts->avg[0] = MAX(ts->avg[0], p); + } + ts->samples += 1; +} + +void frequency_range(char *arg, double crop) +/* flesh out the tunes[] for scanning */ +// do we want the fewest ranges (easy) or the fewest bins (harder)? +{ + char *start, *stop, *step; + int i, j, upper, lower, max_size, bw_seen, bw_used, bin_e, buf_len; + int downsample, downsample_passes; + double bin_size; + struct tuning_state *ts; + /* hacky string parsing */ + start = arg; + stop = strchr(start, ':') + 1; + if (stop == (char *)1) { + fprintf(stderr, "Bad frequency range specification: %s\n", arg); + exit(1); + } + stop[-1] = '\0'; + step = strchr(stop, ':') + 1; + if (step == (char *)1) { + fprintf(stderr, "Bad frequency range specification: %s\n", arg); + exit(1); + } + step[-1] = '\0'; + lower = (int)atofs(start); + upper = (int)atofs(stop); + max_size = (int)atofs(step); + stop[-1] = ':'; + step[-1] = ':'; + downsample = 1; + downsample_passes = 0; + /* evenly sized ranges, as close to MAXIMUM_RATE as possible */ + // todo, replace loop with algebra + for (i=1; i<1500; i++) { + bw_seen = (upper - lower) / i; + bw_used = (int)((double)(bw_seen) / (1.0 - crop)); + if (bw_used > MAXIMUM_RATE) { + continue;} + tune_count = i; + break; + } + /* unless small bandwidth */ + if (bw_used < MINIMUM_RATE) { + tune_count = 1; + downsample = MAXIMUM_RATE / bw_used; + bw_used = bw_used * downsample; + } + if (!boxcar && downsample > 1) { + downsample_passes = (int)log2(downsample); + downsample = 1 << downsample_passes; + bw_used = (int)((double)(bw_seen * downsample) / (1.0 - crop)); + } + /* number of bins is power-of-two, bin size is under limit */ + // todo, replace loop with log2 + for (i=1; i<=21; i++) { + bin_e = i; + bin_size = (double)bw_used / (double)((1<<i) * downsample); + if (bin_size <= (double)max_size) { + break;} + } + /* unless giant bins */ + if (max_size >= MINIMUM_RATE) { + bw_seen = max_size; + bw_used = max_size; + tune_count = (upper - lower) / bw_seen; + bin_e = 0; + crop = 0; + } + if (tune_count > MAX_TUNES) { + fprintf(stderr, "Error: bandwidth too wide.\n"); + exit(1); + } + buf_len = 2 * (1<<bin_e) * downsample; + if (buf_len < DEFAULT_BUF_LENGTH) { + buf_len = DEFAULT_BUF_LENGTH; + } + /* build the array */ + for (i=0; i<tune_count; i++) { + ts = &tunes[i]; + ts->freq = lower + i*bw_seen + bw_seen/2; + ts->rate = bw_used; + ts->bin_e = bin_e; + ts->samples = 0; + ts->crop = crop; + ts->downsample = downsample; + ts->downsample_passes = downsample_passes; + ts->avg = (long*)malloc((1<<bin_e) * sizeof(long)); + if (!ts->avg) { + fprintf(stderr, "Error: malloc.\n"); + exit(1); + } + for (j=0; j<(1<<bin_e); j++) { + ts->avg[j] = 0L; + } + ts->buf8 = (uint8_t*)malloc(buf_len * sizeof(uint8_t)); + if (!ts->buf8) { + fprintf(stderr, "Error: malloc.\n"); + exit(1); + } + ts->buf_len = buf_len; + } + /* report */ + fprintf(stderr, "Number of frequency hops: %i\n", tune_count); + fprintf(stderr, "Dongle bandwidth: %iHz\n", bw_used); + fprintf(stderr, "Downsampling by: %ix\n", downsample); + fprintf(stderr, "Cropping by: %0.2f%%\n", crop*100); + fprintf(stderr, "Total FFT bins: %i\n", tune_count * (1<<bin_e)); + fprintf(stderr, "Logged FFT bins: %i\n", \ + (int)((double)(tune_count * (1<<bin_e)) * (1.0-crop))); + fprintf(stderr, "FFT bin size: %0.2fHz\n", bin_size); + fprintf(stderr, "Buffer size: %i bytes (%0.2fms)\n", buf_len, 1000 * 0.5 * (float)buf_len / (float)bw_used); +} + +void retune(rtlsdr_dev_t *d, int freq) +{ + uint8_t dump[BUFFER_DUMP]; + int n_read; + rtlsdr_set_center_freq(d, (uint32_t)freq); + /* wait for settling and flush buffer */ + usleep(5000); + rtlsdr_read_sync(d, &dump, BUFFER_DUMP, &n_read); + if (n_read != BUFFER_DUMP) { + fprintf(stderr, "Error: bad retune.\n");} +} + +void fifth_order(int16_t *data, int length) +/* for half of interleaved data */ +{ + int i; + int a, b, c, d, e, f; + a = data[0]; + b = data[2]; + c = data[4]; + d = data[6]; + e = data[8]; + f = data[10]; + /* a downsample should improve resolution, so don't fully shift */ + /* ease in instead of being stateful */ + data[0] = ((a+b)*10 + (c+d)*5 + d + f) >> 4; + data[2] = ((b+c)*10 + (a+d)*5 + e + f) >> 4; + data[4] = (a + (b+e)*5 + (c+d)*10 + f) >> 4; + for (i=12; i<length; i+=4) { + a = c; + b = d; + c = e; + d = f; + e = data[i-2]; + f = data[i]; + data[i/2] = (a + (b+e)*5 + (c+d)*10 + f) >> 4; + } +} + +void remove_dc(int16_t *data, int length) +/* works on interleaved data */ +{ + int i; + int16_t ave; + long sum = 0L; + for (i=0; i < length; i+=2) { + sum += data[i]; + } + ave = (int16_t)(sum / (long)(length)); + if (ave == 0) { + return;} + for (i=0; i < length; i+=2) { + data[i] -= ave; + } +} + +void generic_fir(int16_t *data, int length, int *fir) +/* Okay, not at all generic. Assumes length 9, fix that eventually. */ +{ + int d, temp, sum; + int hist[9] = {0,}; + /* cheat on the beginning, let it go unfiltered */ + for (d=0; d<18; d+=2) { + hist[d/2] = data[d]; + } + for (d=18; d<length; d+=2) { + temp = data[d]; + sum = 0; + sum += (hist[0] + hist[8]) * fir[1]; + sum += (hist[1] + hist[7]) * fir[2]; + sum += (hist[2] + hist[6]) * fir[3]; + sum += (hist[3] + hist[5]) * fir[4]; + sum += hist[4] * fir[5]; + data[d] = (int16_t)(sum >> 15) ; + hist[0] = hist[1]; + hist[1] = hist[2]; + hist[2] = hist[3]; + hist[3] = hist[4]; + hist[4] = hist[5]; + hist[5] = hist[6]; + hist[6] = hist[7]; + hist[7] = hist[8]; + hist[8] = temp; + } +} + +void downsample_iq(int16_t *data, int length) +{ + fifth_order(data, length); + //remove_dc(data, length); + fifth_order(data+1, length-1); + //remove_dc(data+1, length-1); +} + +long real_conj(int16_t real, int16_t imag) +/* real(n * conj(n)) */ +{ + return ((long)real*(long)real + (long)imag*(long)imag); +} + +void scanner(void) +{ + int i, j, j2, f, n_read, offset, bin_e, bin_len, buf_len, ds, ds_p; + int32_t w; + struct tuning_state *ts; + bin_e = tunes[0].bin_e; + bin_len = 1 << bin_e; + buf_len = tunes[0].buf_len; + for (i=0; i<tune_count; i++) { + if (do_exit >= 2) + {return;} + ts = &tunes[i]; + f = (int)rtlsdr_get_center_freq(dev); + if (f != ts->freq) { + retune(dev, ts->freq);} + rtlsdr_read_sync(dev, ts->buf8, buf_len, &n_read); + if (n_read != buf_len) { + fprintf(stderr, "Error: dropped samples.\n");} + /* rms */ + if (bin_len == 1) { + rms_power(ts); + continue; + } + /* prep for fft */ + for (j=0; j<buf_len; j++) { + fft_buf[j] = (int16_t)ts->buf8[j] - 127; + } + ds = ts->downsample; + ds_p = ts->downsample_passes; + if (boxcar && ds > 1) { + j=2, j2=0; + while (j < buf_len) { + fft_buf[j2] += fft_buf[j]; + fft_buf[j2+1] += fft_buf[j+1]; + fft_buf[j] = 0; + fft_buf[j+1] = 0; + j += 2; + if (j % (ds*2) == 0) { + j2 += 2;} + } + } else if (ds_p) { /* recursive */ + for (j=0; j < ds_p; j++) { + downsample_iq(fft_buf, buf_len >> j); + } + /* droop compensation */ + if (comp_fir_size == 9 && ds_p <= CIC_TABLE_MAX) { + generic_fir(fft_buf, buf_len >> j, cic_9_tables[ds_p]); + generic_fir(fft_buf+1, (buf_len >> j)-1, cic_9_tables[ds_p]); + } + } + remove_dc(fft_buf, buf_len / ds); + remove_dc(fft_buf+1, (buf_len / ds) - 1); + /* window function and fft */ + for (offset=0; offset<(buf_len/ds); offset+=(2*bin_len)) { + // todo, let rect skip this + for (j=0; j<bin_len; j++) { + w = (int32_t)fft_buf[offset+j*2]; + w *= (int32_t)(window_coefs[j]); + //w /= (int32_t)(ds); + fft_buf[offset+j*2] = (int16_t)w; + w = (int32_t)fft_buf[offset+j*2+1]; + w *= (int32_t)(window_coefs[j]); + //w /= (int32_t)(ds); + fft_buf[offset+j*2+1] = (int16_t)w; + } + fix_fft(fft_buf+offset, bin_e); + if (!peak_hold) { + for (j=0; j<bin_len; j++) { + ts->avg[j] += real_conj(fft_buf[offset+j*2], fft_buf[offset+j*2+1]); + } + } else { + for (j=0; j<bin_len; j++) { + ts->avg[j] = MAX(real_conj(fft_buf[offset+j*2], fft_buf[offset+j*2+1]), ts->avg[j]); + } + } + ts->samples += ds; + } + } +} + +void csv_dbm(struct tuning_state *ts) +{ + int i, len, ds, i1, i2, bw2, bin_count; + long tmp; + double dbm; + len = 1 << ts->bin_e; + ds = ts->downsample; + /* fix FFT stuff quirks */ + if (ts->bin_e > 0) { + /* nuke DC component (not effective for all windows) */ + ts->avg[0] = ts->avg[1]; + /* FFT is translated by 180 degrees */ + for (i=0; i<len/2; i++) { + tmp = ts->avg[i]; + ts->avg[i] = ts->avg[i+len/2]; + ts->avg[i+len/2] = tmp; + } + } + /* Hz low, Hz high, Hz step, samples, dbm, dbm, ... */ + bin_count = (int)((double)len * (1.0 - ts->crop)); + bw2 = (int)(((double)ts->rate * (double)bin_count) / (len * 2 * ds)); + fprintf(file, "%i, %i, %.2f, %i, ", ts->freq - bw2, ts->freq + bw2, + (double)ts->rate / (double)(len*ds), ts->samples); + // something seems off with the dbm math + i1 = 0 + (int)((double)len * ts->crop * 0.5); + i2 = (len-1) - (int)((double)len * ts->crop * 0.5); + for (i=i1; i<=i2; i++) { + dbm = (double)ts->avg[i]; + dbm /= (double)ts->rate; + dbm /= (double)ts->samples; + dbm = 10 * log10(dbm); + fprintf(file, "%.2f, ", dbm); + } + dbm = (double)ts->avg[i2] / ((double)ts->rate * (double)ts->samples); + if (ts->bin_e == 0) { + dbm = ((double)ts->avg[0] / \ + ((double)ts->rate * (double)ts->samples));} + dbm = 10 * log10(dbm); + fprintf(file, "%.2f\n", dbm); + for (i=0; i<len; i++) { + ts->avg[i] = 0L; + } + ts->samples = 0; +} + +int main(int argc, char **argv) +{ +#ifndef _WIN32 + struct sigaction sigact; +#endif + char *filename = NULL; + int i, length, r, opt, wb_mode = 0; + int f_set = 0; + int gain = AUTO_GAIN; // tenths of a dB + int dev_index = 0; + int dev_given = 0; + int ppm_error = 0; + int interval = 10; + int fft_threads = 1; + int smoothing = 0; + int single = 0; + int direct_sampling = 0; + int offset_tuning = 0; + int enable_biastee = 0; + double crop = 0.0; + char *freq_optarg; + time_t next_tick; + time_t time_now; + time_t exit_time = 0; + char t_str[50]; + struct tm *cal_time; + double (*window_fn)(int, int) = rectangle; + freq_optarg = ""; + + while ((opt = getopt(argc, argv, "f:i:s:t:d:g:p:e:w:c:F:1PDOhT")) != -1) { + switch (opt) { + case 'f': // lower:upper:bin_size + freq_optarg = strdup(optarg); + f_set = 1; + break; + case 'd': + dev_index = verbose_device_search(optarg); + dev_given = 1; + break; + case 'g': + gain = (int)(atof(optarg) * 10); + break; + case 'c': + crop = atofp(optarg); + break; + case 'i': + interval = (int)round(atoft(optarg)); + break; + case 'e': + exit_time = (time_t)((int)round(atoft(optarg))); + break; + case 's': + if (strcmp("avg", optarg) == 0) { + smoothing = 0;} + if (strcmp("iir", optarg) == 0) { + smoothing = 1;} + break; + case 'w': + if (strcmp("rectangle", optarg) == 0) { + window_fn = rectangle;} + if (strcmp("hamming", optarg) == 0) { + window_fn = hamming;} + if (strcmp("blackman", optarg) == 0) { + window_fn = blackman;} + if (strcmp("blackman-harris", optarg) == 0) { + window_fn = blackman_harris;} + if (strcmp("hann-poisson", optarg) == 0) { + window_fn = hann_poisson;} + if (strcmp("youssef", optarg) == 0) { + window_fn = youssef;} + if (strcmp("kaiser", optarg) == 0) { + window_fn = kaiser;} + if (strcmp("bartlett", optarg) == 0) { + window_fn = bartlett;} + break; + case 't': + fft_threads = atoi(optarg); + break; + case 'p': + ppm_error = atoi(optarg); + break; + case '1': + single = 1; + break; + case 'P': + peak_hold = 1; + break; + case 'D': + direct_sampling = 1; + break; + case 'O': + offset_tuning = 1; + break; + case 'F': + boxcar = 0; + comp_fir_size = atoi(optarg); + break; + case 'T': + enable_biastee = 1; + break; + case 'h': + default: + usage(); + break; + } + } + + if (!f_set) { + fprintf(stderr, "No frequency range provided.\n"); + exit(1); + } + + if ((crop < 0.0) || (crop > 1.0)) { + fprintf(stderr, "Crop value outside of 0 to 1.\n"); + exit(1); + } + + frequency_range(freq_optarg, crop); + + if (tune_count == 0) { + usage();} + + if (argc <= optind) { + filename = "-"; + } else { + filename = argv[optind]; + } + + if (interval < 1) { + interval = 1;} + + fprintf(stderr, "Reporting every %i seconds\n", interval); + + if (!dev_given) { + dev_index = verbose_device_search("0"); + } + + if (dev_index < 0) { + exit(1); + } + + r = rtlsdr_open(&dev, (uint32_t)dev_index); + if (r < 0) { + fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dev_index); + exit(1); + } +#ifndef _WIN32 + sigact.sa_handler = sighandler; + sigemptyset(&sigact.sa_mask); + sigact.sa_flags = 0; + sigaction(SIGINT, &sigact, NULL); + sigaction(SIGTERM, &sigact, NULL); + sigaction(SIGQUIT, &sigact, NULL); + sigaction(SIGPIPE, &sigact, NULL); +#else + SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE ); +#endif + + if (direct_sampling) { + verbose_direct_sampling(dev, 1); + } + + if (offset_tuning) { + verbose_offset_tuning(dev); + } + + /* Set the tuner gain */ + if (gain == AUTO_GAIN) { + verbose_auto_gain(dev); + } else { + gain = nearest_gain(dev, gain); + verbose_gain_set(dev, gain); + } + + verbose_ppm_set(dev, ppm_error); + + rtlsdr_set_bias_tee(dev, enable_biastee); + if (enable_biastee) + fprintf(stderr, "activated bias-T on GPIO PIN 0\n"); + + if (strcmp(filename, "-") == 0) { /* Write log to stdout */ + file = stdout; +#ifdef _WIN32 + // Is this necessary? Output is ascii. + _setmode(_fileno(file), _O_BINARY); +#endif + } else { + file = fopen(filename, "wb"); + if (!file) { + fprintf(stderr, "Failed to open %s\n", filename); + exit(1); + } + } + + /* Reset endpoint before we start reading from it (mandatory) */ + verbose_reset_buffer(dev); + + /* actually do stuff */ + rtlsdr_set_sample_rate(dev, (uint32_t)tunes[0].rate); + sine_table(tunes[0].bin_e); + next_tick = time(NULL) + interval; + if (exit_time) { + exit_time = time(NULL) + exit_time;} + fft_buf = malloc(tunes[0].buf_len * sizeof(int16_t)); + length = 1 << tunes[0].bin_e; + window_coefs = malloc(length * sizeof(int)); + for (i=0; i<length; i++) { + window_coefs[i] = (int)(256*window_fn(i, length)); + } + while (!do_exit) { + scanner(); + time_now = time(NULL); + if (time_now < next_tick) { + continue;} + // time, Hz low, Hz high, Hz step, samples, dbm, dbm, ... + cal_time = localtime(&time_now); + strftime(t_str, 50, "%Y-%m-%d, %H:%M:%S", cal_time); + for (i=0; i<tune_count; i++) { + fprintf(file, "%s, ", t_str); + csv_dbm(&tunes[i]); + } + fflush(file); + while (time(NULL) >= next_tick) { + next_tick += interval;} + if (single) { + do_exit = 1;} + if (exit_time && time(NULL) >= exit_time) { + do_exit = 1;} + } + + /* clean up */ + + if (do_exit) { + fprintf(stderr, "\nUser cancel, exiting...\n");} + else { + fprintf(stderr, "\nLibrary error %d, exiting...\n", r);} + + if (file != stdout) { + fclose(file);} + + rtlsdr_close(dev); + free(fft_buf); + free(window_coefs); + //for (i=0; i<tune_count; i++) { + // free(tunes[i].avg); + // free(tunes[i].buf8); + //} + return r >= 0 ? r : -r; +} + +// vim: tabstop=8:softtabstop=8:shiftwidth=8:noexpandtab |