summaryrefslogtreecommitdiff
path: root/src/rtl_power.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/rtl_power.c')
-rw-r--r--src/rtl_power.c1015
1 files changed, 1015 insertions, 0 deletions
diff --git a/src/rtl_power.c b/src/rtl_power.c
new file mode 100644
index 0000000..6204de2
--- /dev/null
+++ b/src/rtl_power.c
@@ -0,0 +1,1015 @@
+/*
+ * rtl-sdr, turns your Realtek RTL2832 based DVB dongle into a SDR receiver
+ * Copyright (C) 2012 by Steve Markgraf <steve@steve-m.de>
+ * Copyright (C) 2012 by Hoernchen <la@tfc-server.de>
+ * Copyright (C) 2012 by Kyle Keen <keenerd@gmail.com>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+
+/*
+ * rtl_power: general purpose FFT integrator
+ * -f low_freq:high_freq:max_bin_size
+ * -i seconds
+ * outputs CSV
+ * time, low, high, step, db, db, db ...
+ * db optional? raw output might be better for noise correction
+ * todo:
+ * threading
+ * randomized hopping
+ * noise correction
+ * continuous IIR
+ * general astronomy usefulness
+ * multiple dongles
+ * multiple FFT workers
+ * check edge cropping for off-by-one and rounding errors
+ * 1.8MS/s for hiding xtal harmonics
+ */
+
+#include <errno.h>
+#include <signal.h>
+#include <string.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <time.h>
+
+#ifndef _WIN32
+#include <unistd.h>
+#else
+#include <windows.h>
+#include <fcntl.h>
+#include <io.h>
+#include "getopt/getopt.h"
+#define usleep(x) Sleep(x/1000)
+#if defined(_MSC_VER) && (_MSC_VER < 1800)
+#define round(x) (x > 0.0 ? floor(x + 0.5): ceil(x - 0.5))
+#endif
+#define _USE_MATH_DEFINES
+#endif
+
+#include <math.h>
+#include <pthread.h>
+#include <libusb.h>
+
+#include "rtl-sdr.h"
+#include "convenience/convenience.h"
+
+#define MAX(x, y) (((x) > (y)) ? (x) : (y))
+
+#define DEFAULT_BUF_LENGTH (1 * 16384)
+#define AUTO_GAIN -100
+#define BUFFER_DUMP (1<<12)
+
+#define MAXIMUM_RATE 2800000
+#define MINIMUM_RATE 1000000
+
+static volatile int do_exit = 0;
+static rtlsdr_dev_t *dev = NULL;
+FILE *file;
+
+int16_t* Sinewave;
+double* power_table;
+int N_WAVE, LOG2_N_WAVE;
+int next_power;
+int16_t *fft_buf;
+int *window_coefs;
+
+struct tuning_state
+/* one per tuning range */
+{
+ int freq;
+ int rate;
+ int bin_e;
+ long *avg; /* length == 2^bin_e */
+ int samples;
+ int downsample;
+ int downsample_passes; /* for the recursive filter */
+ double crop;
+ //pthread_rwlock_t avg_lock;
+ //pthread_mutex_t avg_mutex;
+ /* having the iq buffer here is wasteful, but will avoid contention */
+ uint8_t *buf8;
+ int buf_len;
+ //int *comp_fir;
+ //pthread_rwlock_t buf_lock;
+ //pthread_mutex_t buf_mutex;
+};
+
+/* 3000 is enough for 3GHz b/w worst case */
+#define MAX_TUNES 3000
+struct tuning_state tunes[MAX_TUNES];
+int tune_count = 0;
+
+int boxcar = 1;
+int comp_fir_size = 0;
+int peak_hold = 0;
+
+void usage(void)
+{
+ fprintf(stderr,
+ "rtl_power, a simple FFT logger for RTL2832 based DVB-T receivers\n\n"
+ "Use:\trtl_power -f freq_range [-options] [filename]\n"
+ "\t-f lower:upper:bin_size [Hz]\n"
+ "\t (bin size is a maximum, smaller more convenient bins\n"
+ "\t will be used. valid range 1Hz - 2.8MHz)\n"
+ "\t[-i integration_interval (default: 10 seconds)]\n"
+ "\t (buggy if a full sweep takes longer than the interval)\n"
+ "\t[-1 enables single-shot mode (default: off)]\n"
+ "\t[-e exit_timer (default: off/0)]\n"
+ //"\t[-s avg/iir smoothing (default: avg)]\n"
+ //"\t[-t threads (default: 1)]\n"
+ "\t[-d device_index (default: 0)]\n"
+ "\t[-g tuner_gain (default: automatic)]\n"
+ "\t[-p ppm_error (default: 0)]\n"
+ "\t[-T enable bias-T on GPIO PIN 0 (works for rtl-sdr.com v3 dongles)]\n"
+ "\tfilename (a '-' dumps samples to stdout)\n"
+ "\t (omitting the filename also uses stdout)\n"
+ "\n"
+ "Experimental options:\n"
+ "\t[-w window (default: rectangle)]\n"
+ "\t (hamming, blackman, blackman-harris, hann-poisson, bartlett, youssef)\n"
+ // kaiser
+ "\t[-c crop_percent (default: 0%%, recommended: 20%%-50%%)]\n"
+ "\t (discards data at the edges, 100%% discards everything)\n"
+ "\t (has no effect for bins larger than 1MHz)\n"
+ "\t[-F fir_size (default: disabled)]\n"
+ "\t (enables low-leakage downsample filter,\n"
+ "\t fir_size can be 0 or 9. 0 has bad roll off,\n"
+ "\t try with '-c 50%%')\n"
+ "\t[-P enables peak hold (default: off)]\n"
+ "\t[-D enable direct sampling (default: off)]\n"
+ "\t[-O enable offset tuning (default: off)]\n"
+ "\n"
+ "CSV FFT output columns:\n"
+ "\tdate, time, Hz low, Hz high, Hz step, samples, dbm, dbm, ...\n\n"
+ "Examples:\n"
+ "\trtl_power -f 88M:108M:125k fm_stations.csv\n"
+ "\t (creates 160 bins across the FM band,\n"
+ "\t individual stations should be visible)\n"
+ "\trtl_power -f 100M:1G:1M -i 5m -1 survey.csv\n"
+ "\t (a five minute low res scan of nearly everything)\n"
+ "\trtl_power -f ... -i 15m -1 log.csv\n"
+ "\t (integrate for 15 minutes and exit afterwards)\n"
+ "\trtl_power -f ... -e 1h | gzip > log.csv.gz\n"
+ "\t (collect data for one hour and compress it on the fly)\n\n"
+ "Convert CSV to a waterfall graphic with:\n"
+ "\t http://kmkeen.com/tmp/heatmap.py.txt \n");
+ exit(1);
+}
+
+void multi_bail(void)
+{
+ if (do_exit == 1)
+ {
+ fprintf(stderr, "Signal caught, finishing scan pass.\n");
+ }
+ if (do_exit >= 2)
+ {
+ fprintf(stderr, "Signal caught, aborting immediately.\n");
+ }
+}
+
+#ifdef _WIN32
+BOOL WINAPI
+sighandler(int signum)
+{
+ if (CTRL_C_EVENT == signum) {
+ do_exit++;
+ multi_bail();
+ return TRUE;
+ }
+ return FALSE;
+}
+#else
+static void sighandler(int signum)
+{
+ do_exit++;
+ multi_bail();
+}
+#endif
+
+/* more cond dumbness */
+#define safe_cond_signal(n, m) pthread_mutex_lock(m); pthread_cond_signal(n); pthread_mutex_unlock(m)
+#define safe_cond_wait(n, m) pthread_mutex_lock(m); pthread_cond_wait(n, m); pthread_mutex_unlock(m)
+
+/* {length, coef, coef, coef} and scaled by 2^15
+ for now, only length 9, optimal way to get +85% bandwidth */
+#define CIC_TABLE_MAX 10
+int cic_9_tables[][10] = {
+ {0,},
+ {9, -156, -97, 2798, -15489, 61019, -15489, 2798, -97, -156},
+ {9, -128, -568, 5593, -24125, 74126, -24125, 5593, -568, -128},
+ {9, -129, -639, 6187, -26281, 77511, -26281, 6187, -639, -129},
+ {9, -122, -612, 6082, -26353, 77818, -26353, 6082, -612, -122},
+ {9, -120, -602, 6015, -26269, 77757, -26269, 6015, -602, -120},
+ {9, -120, -582, 5951, -26128, 77542, -26128, 5951, -582, -120},
+ {9, -119, -580, 5931, -26094, 77505, -26094, 5931, -580, -119},
+ {9, -119, -578, 5921, -26077, 77484, -26077, 5921, -578, -119},
+ {9, -119, -577, 5917, -26067, 77473, -26067, 5917, -577, -119},
+ {9, -199, -362, 5303, -25505, 77489, -25505, 5303, -362, -199},
+};
+
+#if defined(_MSC_VER) && (_MSC_VER < 1800)
+double log2(double n)
+{
+ return log(n) / log(2.0);
+}
+#endif
+
+/* FFT based on fix_fft.c by Roberts, Slaney and Bouras
+ http://www.jjj.de/fft/fftpage.html
+ 16 bit ints for everything
+ -32768..+32768 maps to -1.0..+1.0
+*/
+
+void sine_table(int size)
+{
+ int i;
+ double d;
+ LOG2_N_WAVE = size;
+ N_WAVE = 1 << LOG2_N_WAVE;
+ Sinewave = malloc(sizeof(int16_t) * N_WAVE*3/4);
+ power_table = malloc(sizeof(double) * N_WAVE);
+ for (i=0; i<N_WAVE*3/4; i++)
+ {
+ d = (double)i * 2.0 * M_PI / N_WAVE;
+ Sinewave[i] = (int)round(32767*sin(d));
+ //printf("%i\n", Sinewave[i]);
+ }
+}
+
+static inline int16_t FIX_MPY(int16_t a, int16_t b)
+/* fixed point multiply and scale */
+{
+ int c = ((int)a * (int)b) >> 14;
+ b = c & 0x01;
+ return (c >> 1) + b;
+}
+
+int fix_fft(int16_t iq[], int m)
+/* interleaved iq[], 0 <= n < 2**m, changes in place */
+{
+ int mr, nn, i, j, l, k, istep, n, shift;
+ int16_t qr, qi, tr, ti, wr, wi;
+ n = 1 << m;
+ if (n > N_WAVE)
+ {return -1;}
+ mr = 0;
+ nn = n - 1;
+ /* decimation in time - re-order data */
+ for (m=1; m<=nn; ++m) {
+ l = n;
+ do
+ {l >>= 1;}
+ while (mr+l > nn);
+ mr = (mr & (l-1)) + l;
+ if (mr <= m)
+ {continue;}
+ // real = 2*m, imag = 2*m+1
+ tr = iq[2*m];
+ iq[2*m] = iq[2*mr];
+ iq[2*mr] = tr;
+ ti = iq[2*m+1];
+ iq[2*m+1] = iq[2*mr+1];
+ iq[2*mr+1] = ti;
+ }
+ l = 1;
+ k = LOG2_N_WAVE-1;
+ while (l < n) {
+ shift = 1;
+ istep = l << 1;
+ for (m=0; m<l; ++m) {
+ j = m << k;
+ wr = Sinewave[j+N_WAVE/4];
+ wi = -Sinewave[j];
+ if (shift) {
+ wr >>= 1; wi >>= 1;}
+ for (i=m; i<n; i+=istep) {
+ j = i + l;
+ tr = FIX_MPY(wr,iq[2*j]) - FIX_MPY(wi,iq[2*j+1]);
+ ti = FIX_MPY(wr,iq[2*j+1]) + FIX_MPY(wi,iq[2*j]);
+ qr = iq[2*i];
+ qi = iq[2*i+1];
+ if (shift) {
+ qr >>= 1; qi >>= 1;}
+ iq[2*j] = qr - tr;
+ iq[2*j+1] = qi - ti;
+ iq[2*i] = qr + tr;
+ iq[2*i+1] = qi + ti;
+ }
+ }
+ --k;
+ l = istep;
+ }
+ return 0;
+}
+
+double rectangle(int i, int length)
+{
+ return 1.0;
+}
+
+double hamming(int i, int length)
+{
+ double a, b, w, N1;
+ a = 25.0/46.0;
+ b = 21.0/46.0;
+ N1 = (double)(length-1);
+ w = a - b*cos(2*i*M_PI/N1);
+ return w;
+}
+
+double blackman(int i, int length)
+{
+ double a0, a1, a2, w, N1;
+ a0 = 7938.0/18608.0;
+ a1 = 9240.0/18608.0;
+ a2 = 1430.0/18608.0;
+ N1 = (double)(length-1);
+ w = a0 - a1*cos(2*i*M_PI/N1) + a2*cos(4*i*M_PI/N1);
+ return w;
+}
+
+double blackman_harris(int i, int length)
+{
+ double a0, a1, a2, a3, w, N1;
+ a0 = 0.35875;
+ a1 = 0.48829;
+ a2 = 0.14128;
+ a3 = 0.01168;
+ N1 = (double)(length-1);
+ w = a0 - a1*cos(2*i*M_PI/N1) + a2*cos(4*i*M_PI/N1) - a3*cos(6*i*M_PI/N1);
+ return w;
+}
+
+double hann_poisson(int i, int length)
+{
+ double a, N1, w;
+ a = 2.0;
+ N1 = (double)(length-1);
+ w = 0.5 * (1 - cos(2*M_PI*i/N1)) * \
+ pow(M_E, (-a*(double)abs((int)(N1-1-2*i)))/N1);
+ return w;
+}
+
+double youssef(int i, int length)
+/* really a blackman-harris-poisson window, but that is a mouthful */
+{
+ double a, a0, a1, a2, a3, w, N1;
+ a0 = 0.35875;
+ a1 = 0.48829;
+ a2 = 0.14128;
+ a3 = 0.01168;
+ N1 = (double)(length-1);
+ w = a0 - a1*cos(2*i*M_PI/N1) + a2*cos(4*i*M_PI/N1) - a3*cos(6*i*M_PI/N1);
+ a = 0.0025;
+ w *= pow(M_E, (-a*(double)abs((int)(N1-1-2*i)))/N1);
+ return w;
+}
+
+double kaiser(int i, int length)
+// todo, become more smart
+{
+ return 1.0;
+}
+
+double bartlett(int i, int length)
+{
+ double N1, L, w;
+ L = (double)length;
+ N1 = L - 1;
+ w = (i - N1/2) / (L/2);
+ if (w < 0) {
+ w = -w;}
+ w = 1 - w;
+ return w;
+}
+
+void rms_power(struct tuning_state *ts)
+/* for bins between 1MHz and 2MHz */
+{
+ int i, s;
+ uint8_t *buf = ts->buf8;
+ int buf_len = ts->buf_len;
+ long p, t;
+ double dc, err;
+
+ p = t = 0L;
+ for (i=0; i<buf_len; i++) {
+ s = (int)buf[i] - 127;
+ t += (long)s;
+ p += (long)(s * s);
+ }
+ /* correct for dc offset in squares */
+ dc = (double)t / (double)buf_len;
+ err = t * 2 * dc - dc * dc * buf_len;
+ p -= (long)round(err);
+
+ if (!peak_hold) {
+ ts->avg[0] += p;
+ } else {
+ ts->avg[0] = MAX(ts->avg[0], p);
+ }
+ ts->samples += 1;
+}
+
+void frequency_range(char *arg, double crop)
+/* flesh out the tunes[] for scanning */
+// do we want the fewest ranges (easy) or the fewest bins (harder)?
+{
+ char *start, *stop, *step;
+ int i, j, upper, lower, max_size, bw_seen, bw_used, bin_e, buf_len;
+ int downsample, downsample_passes;
+ double bin_size;
+ struct tuning_state *ts;
+ /* hacky string parsing */
+ start = arg;
+ stop = strchr(start, ':') + 1;
+ if (stop == (char *)1) {
+ fprintf(stderr, "Bad frequency range specification: %s\n", arg);
+ exit(1);
+ }
+ stop[-1] = '\0';
+ step = strchr(stop, ':') + 1;
+ if (step == (char *)1) {
+ fprintf(stderr, "Bad frequency range specification: %s\n", arg);
+ exit(1);
+ }
+ step[-1] = '\0';
+ lower = (int)atofs(start);
+ upper = (int)atofs(stop);
+ max_size = (int)atofs(step);
+ stop[-1] = ':';
+ step[-1] = ':';
+ downsample = 1;
+ downsample_passes = 0;
+ /* evenly sized ranges, as close to MAXIMUM_RATE as possible */
+ // todo, replace loop with algebra
+ for (i=1; i<1500; i++) {
+ bw_seen = (upper - lower) / i;
+ bw_used = (int)((double)(bw_seen) / (1.0 - crop));
+ if (bw_used > MAXIMUM_RATE) {
+ continue;}
+ tune_count = i;
+ break;
+ }
+ /* unless small bandwidth */
+ if (bw_used < MINIMUM_RATE) {
+ tune_count = 1;
+ downsample = MAXIMUM_RATE / bw_used;
+ bw_used = bw_used * downsample;
+ }
+ if (!boxcar && downsample > 1) {
+ downsample_passes = (int)log2(downsample);
+ downsample = 1 << downsample_passes;
+ bw_used = (int)((double)(bw_seen * downsample) / (1.0 - crop));
+ }
+ /* number of bins is power-of-two, bin size is under limit */
+ // todo, replace loop with log2
+ for (i=1; i<=21; i++) {
+ bin_e = i;
+ bin_size = (double)bw_used / (double)((1<<i) * downsample);
+ if (bin_size <= (double)max_size) {
+ break;}
+ }
+ /* unless giant bins */
+ if (max_size >= MINIMUM_RATE) {
+ bw_seen = max_size;
+ bw_used = max_size;
+ tune_count = (upper - lower) / bw_seen;
+ bin_e = 0;
+ crop = 0;
+ }
+ if (tune_count > MAX_TUNES) {
+ fprintf(stderr, "Error: bandwidth too wide.\n");
+ exit(1);
+ }
+ buf_len = 2 * (1<<bin_e) * downsample;
+ if (buf_len < DEFAULT_BUF_LENGTH) {
+ buf_len = DEFAULT_BUF_LENGTH;
+ }
+ /* build the array */
+ for (i=0; i<tune_count; i++) {
+ ts = &tunes[i];
+ ts->freq = lower + i*bw_seen + bw_seen/2;
+ ts->rate = bw_used;
+ ts->bin_e = bin_e;
+ ts->samples = 0;
+ ts->crop = crop;
+ ts->downsample = downsample;
+ ts->downsample_passes = downsample_passes;
+ ts->avg = (long*)malloc((1<<bin_e) * sizeof(long));
+ if (!ts->avg) {
+ fprintf(stderr, "Error: malloc.\n");
+ exit(1);
+ }
+ for (j=0; j<(1<<bin_e); j++) {
+ ts->avg[j] = 0L;
+ }
+ ts->buf8 = (uint8_t*)malloc(buf_len * sizeof(uint8_t));
+ if (!ts->buf8) {
+ fprintf(stderr, "Error: malloc.\n");
+ exit(1);
+ }
+ ts->buf_len = buf_len;
+ }
+ /* report */
+ fprintf(stderr, "Number of frequency hops: %i\n", tune_count);
+ fprintf(stderr, "Dongle bandwidth: %iHz\n", bw_used);
+ fprintf(stderr, "Downsampling by: %ix\n", downsample);
+ fprintf(stderr, "Cropping by: %0.2f%%\n", crop*100);
+ fprintf(stderr, "Total FFT bins: %i\n", tune_count * (1<<bin_e));
+ fprintf(stderr, "Logged FFT bins: %i\n", \
+ (int)((double)(tune_count * (1<<bin_e)) * (1.0-crop)));
+ fprintf(stderr, "FFT bin size: %0.2fHz\n", bin_size);
+ fprintf(stderr, "Buffer size: %i bytes (%0.2fms)\n", buf_len, 1000 * 0.5 * (float)buf_len / (float)bw_used);
+}
+
+void retune(rtlsdr_dev_t *d, int freq)
+{
+ uint8_t dump[BUFFER_DUMP];
+ int n_read;
+ rtlsdr_set_center_freq(d, (uint32_t)freq);
+ /* wait for settling and flush buffer */
+ usleep(5000);
+ rtlsdr_read_sync(d, &dump, BUFFER_DUMP, &n_read);
+ if (n_read != BUFFER_DUMP) {
+ fprintf(stderr, "Error: bad retune.\n");}
+}
+
+void fifth_order(int16_t *data, int length)
+/* for half of interleaved data */
+{
+ int i;
+ int a, b, c, d, e, f;
+ a = data[0];
+ b = data[2];
+ c = data[4];
+ d = data[6];
+ e = data[8];
+ f = data[10];
+ /* a downsample should improve resolution, so don't fully shift */
+ /* ease in instead of being stateful */
+ data[0] = ((a+b)*10 + (c+d)*5 + d + f) >> 4;
+ data[2] = ((b+c)*10 + (a+d)*5 + e + f) >> 4;
+ data[4] = (a + (b+e)*5 + (c+d)*10 + f) >> 4;
+ for (i=12; i<length; i+=4) {
+ a = c;
+ b = d;
+ c = e;
+ d = f;
+ e = data[i-2];
+ f = data[i];
+ data[i/2] = (a + (b+e)*5 + (c+d)*10 + f) >> 4;
+ }
+}
+
+void remove_dc(int16_t *data, int length)
+/* works on interleaved data */
+{
+ int i;
+ int16_t ave;
+ long sum = 0L;
+ for (i=0; i < length; i+=2) {
+ sum += data[i];
+ }
+ ave = (int16_t)(sum / (long)(length));
+ if (ave == 0) {
+ return;}
+ for (i=0; i < length; i+=2) {
+ data[i] -= ave;
+ }
+}
+
+void generic_fir(int16_t *data, int length, int *fir)
+/* Okay, not at all generic. Assumes length 9, fix that eventually. */
+{
+ int d, temp, sum;
+ int hist[9] = {0,};
+ /* cheat on the beginning, let it go unfiltered */
+ for (d=0; d<18; d+=2) {
+ hist[d/2] = data[d];
+ }
+ for (d=18; d<length; d+=2) {
+ temp = data[d];
+ sum = 0;
+ sum += (hist[0] + hist[8]) * fir[1];
+ sum += (hist[1] + hist[7]) * fir[2];
+ sum += (hist[2] + hist[6]) * fir[3];
+ sum += (hist[3] + hist[5]) * fir[4];
+ sum += hist[4] * fir[5];
+ data[d] = (int16_t)(sum >> 15) ;
+ hist[0] = hist[1];
+ hist[1] = hist[2];
+ hist[2] = hist[3];
+ hist[3] = hist[4];
+ hist[4] = hist[5];
+ hist[5] = hist[6];
+ hist[6] = hist[7];
+ hist[7] = hist[8];
+ hist[8] = temp;
+ }
+}
+
+void downsample_iq(int16_t *data, int length)
+{
+ fifth_order(data, length);
+ //remove_dc(data, length);
+ fifth_order(data+1, length-1);
+ //remove_dc(data+1, length-1);
+}
+
+long real_conj(int16_t real, int16_t imag)
+/* real(n * conj(n)) */
+{
+ return ((long)real*(long)real + (long)imag*(long)imag);
+}
+
+void scanner(void)
+{
+ int i, j, j2, f, n_read, offset, bin_e, bin_len, buf_len, ds, ds_p;
+ int32_t w;
+ struct tuning_state *ts;
+ bin_e = tunes[0].bin_e;
+ bin_len = 1 << bin_e;
+ buf_len = tunes[0].buf_len;
+ for (i=0; i<tune_count; i++) {
+ if (do_exit >= 2)
+ {return;}
+ ts = &tunes[i];
+ f = (int)rtlsdr_get_center_freq(dev);
+ if (f != ts->freq) {
+ retune(dev, ts->freq);}
+ rtlsdr_read_sync(dev, ts->buf8, buf_len, &n_read);
+ if (n_read != buf_len) {
+ fprintf(stderr, "Error: dropped samples.\n");}
+ /* rms */
+ if (bin_len == 1) {
+ rms_power(ts);
+ continue;
+ }
+ /* prep for fft */
+ for (j=0; j<buf_len; j++) {
+ fft_buf[j] = (int16_t)ts->buf8[j] - 127;
+ }
+ ds = ts->downsample;
+ ds_p = ts->downsample_passes;
+ if (boxcar && ds > 1) {
+ j=2, j2=0;
+ while (j < buf_len) {
+ fft_buf[j2] += fft_buf[j];
+ fft_buf[j2+1] += fft_buf[j+1];
+ fft_buf[j] = 0;
+ fft_buf[j+1] = 0;
+ j += 2;
+ if (j % (ds*2) == 0) {
+ j2 += 2;}
+ }
+ } else if (ds_p) { /* recursive */
+ for (j=0; j < ds_p; j++) {
+ downsample_iq(fft_buf, buf_len >> j);
+ }
+ /* droop compensation */
+ if (comp_fir_size == 9 && ds_p <= CIC_TABLE_MAX) {
+ generic_fir(fft_buf, buf_len >> j, cic_9_tables[ds_p]);
+ generic_fir(fft_buf+1, (buf_len >> j)-1, cic_9_tables[ds_p]);
+ }
+ }
+ remove_dc(fft_buf, buf_len / ds);
+ remove_dc(fft_buf+1, (buf_len / ds) - 1);
+ /* window function and fft */
+ for (offset=0; offset<(buf_len/ds); offset+=(2*bin_len)) {
+ // todo, let rect skip this
+ for (j=0; j<bin_len; j++) {
+ w = (int32_t)fft_buf[offset+j*2];
+ w *= (int32_t)(window_coefs[j]);
+ //w /= (int32_t)(ds);
+ fft_buf[offset+j*2] = (int16_t)w;
+ w = (int32_t)fft_buf[offset+j*2+1];
+ w *= (int32_t)(window_coefs[j]);
+ //w /= (int32_t)(ds);
+ fft_buf[offset+j*2+1] = (int16_t)w;
+ }
+ fix_fft(fft_buf+offset, bin_e);
+ if (!peak_hold) {
+ for (j=0; j<bin_len; j++) {
+ ts->avg[j] += real_conj(fft_buf[offset+j*2], fft_buf[offset+j*2+1]);
+ }
+ } else {
+ for (j=0; j<bin_len; j++) {
+ ts->avg[j] = MAX(real_conj(fft_buf[offset+j*2], fft_buf[offset+j*2+1]), ts->avg[j]);
+ }
+ }
+ ts->samples += ds;
+ }
+ }
+}
+
+void csv_dbm(struct tuning_state *ts)
+{
+ int i, len, ds, i1, i2, bw2, bin_count;
+ long tmp;
+ double dbm;
+ len = 1 << ts->bin_e;
+ ds = ts->downsample;
+ /* fix FFT stuff quirks */
+ if (ts->bin_e > 0) {
+ /* nuke DC component (not effective for all windows) */
+ ts->avg[0] = ts->avg[1];
+ /* FFT is translated by 180 degrees */
+ for (i=0; i<len/2; i++) {
+ tmp = ts->avg[i];
+ ts->avg[i] = ts->avg[i+len/2];
+ ts->avg[i+len/2] = tmp;
+ }
+ }
+ /* Hz low, Hz high, Hz step, samples, dbm, dbm, ... */
+ bin_count = (int)((double)len * (1.0 - ts->crop));
+ bw2 = (int)(((double)ts->rate * (double)bin_count) / (len * 2 * ds));
+ fprintf(file, "%i, %i, %.2f, %i, ", ts->freq - bw2, ts->freq + bw2,
+ (double)ts->rate / (double)(len*ds), ts->samples);
+ // something seems off with the dbm math
+ i1 = 0 + (int)((double)len * ts->crop * 0.5);
+ i2 = (len-1) - (int)((double)len * ts->crop * 0.5);
+ for (i=i1; i<=i2; i++) {
+ dbm = (double)ts->avg[i];
+ dbm /= (double)ts->rate;
+ dbm /= (double)ts->samples;
+ dbm = 10 * log10(dbm);
+ fprintf(file, "%.2f, ", dbm);
+ }
+ dbm = (double)ts->avg[i2] / ((double)ts->rate * (double)ts->samples);
+ if (ts->bin_e == 0) {
+ dbm = ((double)ts->avg[0] / \
+ ((double)ts->rate * (double)ts->samples));}
+ dbm = 10 * log10(dbm);
+ fprintf(file, "%.2f\n", dbm);
+ for (i=0; i<len; i++) {
+ ts->avg[i] = 0L;
+ }
+ ts->samples = 0;
+}
+
+int main(int argc, char **argv)
+{
+#ifndef _WIN32
+ struct sigaction sigact;
+#endif
+ char *filename = NULL;
+ int i, length, r, opt, wb_mode = 0;
+ int f_set = 0;
+ int gain = AUTO_GAIN; // tenths of a dB
+ int dev_index = 0;
+ int dev_given = 0;
+ int ppm_error = 0;
+ int interval = 10;
+ int fft_threads = 1;
+ int smoothing = 0;
+ int single = 0;
+ int direct_sampling = 0;
+ int offset_tuning = 0;
+ int enable_biastee = 0;
+ double crop = 0.0;
+ char *freq_optarg;
+ time_t next_tick;
+ time_t time_now;
+ time_t exit_time = 0;
+ char t_str[50];
+ struct tm *cal_time;
+ double (*window_fn)(int, int) = rectangle;
+ freq_optarg = "";
+
+ while ((opt = getopt(argc, argv, "f:i:s:t:d:g:p:e:w:c:F:1PDOhT")) != -1) {
+ switch (opt) {
+ case 'f': // lower:upper:bin_size
+ freq_optarg = strdup(optarg);
+ f_set = 1;
+ break;
+ case 'd':
+ dev_index = verbose_device_search(optarg);
+ dev_given = 1;
+ break;
+ case 'g':
+ gain = (int)(atof(optarg) * 10);
+ break;
+ case 'c':
+ crop = atofp(optarg);
+ break;
+ case 'i':
+ interval = (int)round(atoft(optarg));
+ break;
+ case 'e':
+ exit_time = (time_t)((int)round(atoft(optarg)));
+ break;
+ case 's':
+ if (strcmp("avg", optarg) == 0) {
+ smoothing = 0;}
+ if (strcmp("iir", optarg) == 0) {
+ smoothing = 1;}
+ break;
+ case 'w':
+ if (strcmp("rectangle", optarg) == 0) {
+ window_fn = rectangle;}
+ if (strcmp("hamming", optarg) == 0) {
+ window_fn = hamming;}
+ if (strcmp("blackman", optarg) == 0) {
+ window_fn = blackman;}
+ if (strcmp("blackman-harris", optarg) == 0) {
+ window_fn = blackman_harris;}
+ if (strcmp("hann-poisson", optarg) == 0) {
+ window_fn = hann_poisson;}
+ if (strcmp("youssef", optarg) == 0) {
+ window_fn = youssef;}
+ if (strcmp("kaiser", optarg) == 0) {
+ window_fn = kaiser;}
+ if (strcmp("bartlett", optarg) == 0) {
+ window_fn = bartlett;}
+ break;
+ case 't':
+ fft_threads = atoi(optarg);
+ break;
+ case 'p':
+ ppm_error = atoi(optarg);
+ break;
+ case '1':
+ single = 1;
+ break;
+ case 'P':
+ peak_hold = 1;
+ break;
+ case 'D':
+ direct_sampling = 1;
+ break;
+ case 'O':
+ offset_tuning = 1;
+ break;
+ case 'F':
+ boxcar = 0;
+ comp_fir_size = atoi(optarg);
+ break;
+ case 'T':
+ enable_biastee = 1;
+ break;
+ case 'h':
+ default:
+ usage();
+ break;
+ }
+ }
+
+ if (!f_set) {
+ fprintf(stderr, "No frequency range provided.\n");
+ exit(1);
+ }
+
+ if ((crop < 0.0) || (crop > 1.0)) {
+ fprintf(stderr, "Crop value outside of 0 to 1.\n");
+ exit(1);
+ }
+
+ frequency_range(freq_optarg, crop);
+
+ if (tune_count == 0) {
+ usage();}
+
+ if (argc <= optind) {
+ filename = "-";
+ } else {
+ filename = argv[optind];
+ }
+
+ if (interval < 1) {
+ interval = 1;}
+
+ fprintf(stderr, "Reporting every %i seconds\n", interval);
+
+ if (!dev_given) {
+ dev_index = verbose_device_search("0");
+ }
+
+ if (dev_index < 0) {
+ exit(1);
+ }
+
+ r = rtlsdr_open(&dev, (uint32_t)dev_index);
+ if (r < 0) {
+ fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dev_index);
+ exit(1);
+ }
+#ifndef _WIN32
+ sigact.sa_handler = sighandler;
+ sigemptyset(&sigact.sa_mask);
+ sigact.sa_flags = 0;
+ sigaction(SIGINT, &sigact, NULL);
+ sigaction(SIGTERM, &sigact, NULL);
+ sigaction(SIGQUIT, &sigact, NULL);
+ sigaction(SIGPIPE, &sigact, NULL);
+#else
+ SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE );
+#endif
+
+ if (direct_sampling) {
+ verbose_direct_sampling(dev, 1);
+ }
+
+ if (offset_tuning) {
+ verbose_offset_tuning(dev);
+ }
+
+ /* Set the tuner gain */
+ if (gain == AUTO_GAIN) {
+ verbose_auto_gain(dev);
+ } else {
+ gain = nearest_gain(dev, gain);
+ verbose_gain_set(dev, gain);
+ }
+
+ verbose_ppm_set(dev, ppm_error);
+
+ rtlsdr_set_bias_tee(dev, enable_biastee);
+ if (enable_biastee)
+ fprintf(stderr, "activated bias-T on GPIO PIN 0\n");
+
+ if (strcmp(filename, "-") == 0) { /* Write log to stdout */
+ file = stdout;
+#ifdef _WIN32
+ // Is this necessary? Output is ascii.
+ _setmode(_fileno(file), _O_BINARY);
+#endif
+ } else {
+ file = fopen(filename, "wb");
+ if (!file) {
+ fprintf(stderr, "Failed to open %s\n", filename);
+ exit(1);
+ }
+ }
+
+ /* Reset endpoint before we start reading from it (mandatory) */
+ verbose_reset_buffer(dev);
+
+ /* actually do stuff */
+ rtlsdr_set_sample_rate(dev, (uint32_t)tunes[0].rate);
+ sine_table(tunes[0].bin_e);
+ next_tick = time(NULL) + interval;
+ if (exit_time) {
+ exit_time = time(NULL) + exit_time;}
+ fft_buf = malloc(tunes[0].buf_len * sizeof(int16_t));
+ length = 1 << tunes[0].bin_e;
+ window_coefs = malloc(length * sizeof(int));
+ for (i=0; i<length; i++) {
+ window_coefs[i] = (int)(256*window_fn(i, length));
+ }
+ while (!do_exit) {
+ scanner();
+ time_now = time(NULL);
+ if (time_now < next_tick) {
+ continue;}
+ // time, Hz low, Hz high, Hz step, samples, dbm, dbm, ...
+ cal_time = localtime(&time_now);
+ strftime(t_str, 50, "%Y-%m-%d, %H:%M:%S", cal_time);
+ for (i=0; i<tune_count; i++) {
+ fprintf(file, "%s, ", t_str);
+ csv_dbm(&tunes[i]);
+ }
+ fflush(file);
+ while (time(NULL) >= next_tick) {
+ next_tick += interval;}
+ if (single) {
+ do_exit = 1;}
+ if (exit_time && time(NULL) >= exit_time) {
+ do_exit = 1;}
+ }
+
+ /* clean up */
+
+ if (do_exit) {
+ fprintf(stderr, "\nUser cancel, exiting...\n");}
+ else {
+ fprintf(stderr, "\nLibrary error %d, exiting...\n", r);}
+
+ if (file != stdout) {
+ fclose(file);}
+
+ rtlsdr_close(dev);
+ free(fft_buf);
+ free(window_coefs);
+ //for (i=0; i<tune_count; i++) {
+ // free(tunes[i].avg);
+ // free(tunes[i].buf8);
+ //}
+ return r >= 0 ? r : -r;
+}
+
+// vim: tabstop=8:softtabstop=8:shiftwidth=8:noexpandtab